Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > First measurement of electron energy distributions, could enable sustainable energy technologies

Abstract:
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the U.K. have figured out a way to measure how many "hot charge carriers"--for example, electrons with extra energy--are present in a metal nanostructure.

First measurement of electron energy distributions, could enable sustainable energy technologies

Ann Arbor, MI | Posted on June 5th, 2020

"For example, if you wanted to employ light to split water into hydrogen and oxygen, you can use hot charge carriers because electrons that are more energetic can more readily participate in the reaction and drive the reaction faster. That's one possible use for hot carriers in energy conversion or storage applications," said Edgar Meyhofer, a professor of mechanical engineering at U-M, who co-led the research.

Vladimir Shalaev, a professor of electrical and computer engineering, led the contribution from Purdue. The findings also confirm that thinner metals are more efficient at using light for generating hot charge carriers. Light can drive the motion of electrons on the surfaces of materials such as gold and silver, creating waves known as surface plasmons. These waves, in turn, can generate hot charge carriers.

The researchers compared the usual distribution of charge carrier energies to air at room temperature: The molecules in air do not all have the same energy--their average energy is reflected by the temperature. The energies of negatively-charged electrons and positively-charged holes ordinarily follow similar distributions within a material. But in materials that support surface plasmons, light can be used to give extra energy to some charge carriers as though the material were much hotter--more than 2,000 degrees Fahrenheit.

The team created the hot charge carriers by shining laser light onto a gold film just 13 nanometers thick, or hundred or so gold atoms thick, with tiny ridges spaced so that they would resonate with the laser light and generate the surface plasmon waves. Then they measured the energies of the charge carriers by drawing them through gatekeeper molecules into a gold electrode--the tip of a scanning tunneling microscope.

The key to the experiment is those gatekeeper molecules, which were synthesized by the Liverpool team as well as a private company. The molecules allow only charge carriers with certain energies to pass. By repeating the experiments with different molecules, the researchers figured out the energy distribution of the charge carriers.

"Electrons can be thought of as cars running at different speeds on a highway. The molecule acts like an operator--it only allows cars travelling at a certain speed to pass through," said Kun Wang, a postdoctoral fellow in Meyhofer's group.

The researchers also compare it to a prism that separates the spectrum of electron energies rather than the colors in light.

Wang spent more than 18 months working with Harsha Reddy, a Ph.D. student in electrical and computer engineering at Purdue, on how to make this idea work.

"This idea of molecular filters was something no one else in the field has realized in the past," said Reddy, who works in Shalaev's lab.

Once they had developed a successful method, Wang and Reddy repeated the experiments with a second gold structure, this one about 6 nanometers thick. This structure generated hot charge carriers more efficiently than the 13 nanometer version.

"This multidisciplinary basic research effort sheds light on a unique way to measure the energy of charge carriers. These results are expected to play a crucial role in developing future applications in energy conversion and photocatalysis and photodetectors, for instance, that are of great interest to the Department of Defense," said Chakrapani Varanasi, program manager of the team's Multidisciplinary University Research Initiative funded by the Army Research Office.

With the method now demonstrated, the team believes that others can use it to explore and optimize nanostructures. This is important in applications such as converting sunlight to chemical energy because the number of hot charge carriers affects how well a catalyst can direct light energy toward a chemical reaction.

####

For more information, please click here

Contacts:
Nicole Moore


@umich

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The study is published in the journal Science. Additional funding came from the Department of Energy and the Office of Naval Research. Seed funding from the U-M Department of Mechanical Engineering supported complementary calculations.

Related News Press

News and information

Implantable 'living pharmacy' could control body's sleep/wake cycles: Project receives DARPA contract worth up to $33 million over 4 1/2 years May 13th, 2021

Tiny, Wireless, Injectable Chips Use Ultrasound to Monitor Body Processes May 12th, 2021

180 Degree Capital Corp. Reports +14.2% Growth in Q1 2021, $10.60 Net Asset Value Per Share as of March 31, 2021, and Developments From Q2 2021 May 11th, 2021

Graphene key for novel hardware security May 10th, 2021

Imaging

World's first fiber-optic ultrasonic imaging probe for future nanoscale disease diagnostics April 30th, 2021

New Cypher VRS1250 Video-Rate Atomic Force Microscope Enables True Video-Rate Imaging at up to 45 Frames per Second April 30th, 2021

Researchers realize high-efficiency frequency conversion on integrated photonic chip April 23rd, 2021

An easy-to-use platform is a gateway to AI in microscopy April 23rd, 2021

Chemistry

Researchers analyzed circulating currents inside gold nanoparticles: A new method facilitates accurate analysis of magnetic field effects inside complex nanostructures April 30th, 2021

Silver ions hurry up, then wait as they disperse: Rice chemists show ionsí staged release from gold-silver nanoparticles could be useful property April 23rd, 2021

Teamwork makes light shine ever brighter: Combined energy sources return a burst of photons from plasmonic gold nanogaps March 18th, 2021

Brain-Computer Interfaces

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov's dog April 30th, 2021

Cancer

Targeting Cancer Detection & Identification of Microorganisms, CEA-Leti Develops Mid-Infrared, Spectral-Imaging Technique: Presentations at Photonics West 2021 Show How Early-Stage Imaging Systemís Flexibility Can Be Applied Broadly in Medical Field March 18th, 2021

Nanothermometry to improve anticancer strategies February 10th, 2021

Nanoparticle drug delivery technique shows promise for treating pancreatic cancer: Method may also work for breast, prostate, ovarian cancer January 29th, 2021

Understanding nanoparticle entry mechanism into tumors December 25th, 2020

Coatings

Expanding the freedom of design: powder coating on FRP thanks to conductive gelcoats with graphene nanotubes March 3rd, 2021

Crystallography

How to trick electrons to see the hidden face of crystals: Researchers try a trick for complete 3D analysis of submicron crystals August 3rd, 2019

3-D-printed jars in ball-milling experiments June 29th, 2017

Novel nozzle saves crystals: Double flow concept widens spectrum for protein crystallography March 17th, 2017

Biophysics

Promising news from biomedicine: DNA origami more resilient than previously understood June 4th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Blog sites

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Peter Diamandis Thinks Nanotech Will Interface With Human Minds September 1st, 2016

Graphene-Enabled Paper Makes for Flexible Display August 1st, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

Biomimetics

Nanoribbons in solutions mimic nature: Rice University scientists test graphene ribbons' abilities to integrate with biological systems August 15th, 2016

Consulting

Lucintel identifies and prioritizes opportunities for alumina trihydrate (ATH) fillers in the global composites industry August 3rd, 2016

Haydale Wins Major Research Grants September 26th, 2015

Possible Futures

Implantable 'living pharmacy' could control body's sleep/wake cycles: Project receives DARPA contract worth up to $33 million over 4 1/2 years May 13th, 2021

Tiny, Wireless, Injectable Chips Use Ultrasound to Monitor Body Processes May 12th, 2021

Graphene key for novel hardware security May 10th, 2021

With a zap of light, system switches objects' colors and patterns: "Programmable matter" technique could enable product designers to churn out prototypes with ease May 6th, 2021

Chip Technology

Tiny, Wireless, Injectable Chips Use Ultrasound to Monitor Body Processes May 12th, 2021

A silver lining for extreme electronics April 30th, 2021

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov's dog April 30th, 2021

GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021

Announcements

Implantable 'living pharmacy' could control body's sleep/wake cycles: Project receives DARPA contract worth up to $33 million over 4 1/2 years May 13th, 2021

Tiny, Wireless, Injectable Chips Use Ultrasound to Monitor Body Processes May 12th, 2021

180 Degree Capital Corp. Reports +14.2% Growth in Q1 2021, $10.60 Net Asset Value Per Share as of March 31, 2021, and Developments From Q2 2021 May 11th, 2021

Graphene key for novel hardware security May 10th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Tiny, Wireless, Injectable Chips Use Ultrasound to Monitor Body Processes May 12th, 2021

Graphene key for novel hardware security May 10th, 2021

With a zap of light, system switches objects' colors and patterns: "Programmable matter" technique could enable product designers to churn out prototypes with ease May 6th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Tools

World's first fiber-optic ultrasonic imaging probe for future nanoscale disease diagnostics April 30th, 2021

New Cypher VRS1250 Video-Rate Atomic Force Microscope Enables True Video-Rate Imaging at up to 45 Frames per Second April 30th, 2021

Researchers realize high-efficiency frequency conversion on integrated photonic chip April 23rd, 2021

An easy-to-use platform is a gateway to AI in microscopy April 23rd, 2021

Appointments/Promotions/New hires/Resignations/Deaths

JEOL USA Welcomes New Managing Director, Hidetaka Sawada April 19th, 2021

The National Space Society Remembers Ben Bova : NSS Mourns the Loss of a Visionary NSS Leader December 2nd, 2020

Erick Carreira to lead the Journal of the American Chemical Society September 4th, 2020

National Space Society Celebrates the Life of Hugh Downs: Long-serving chair of the NSS Board of Governors and recipient of NSS Lifetime Achievement and Distinguished Service Awards passes at age 99 July 3rd, 2020

Energy

A silver lining for extreme electronics April 30th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

Wearable sensors that detect gas leaks April 19th, 2021

Better solutions for making hydrogen may lie just at the surface April 9th, 2021

Automotive/Transportation

A silver lining for extreme electronics April 30th, 2021

Chile coating and composite industry makes leap forward leveraging graphene nanotube solutions April 9th, 2021

Izon Science launches the Exoid to transform nanoparticle measurement: The semi-automated Exoid device uses new-generation Tunable Resistive Pulse Sensing (TRPS) technology, enabling the measurement of complex nano-particle size, concentration, and charge Ė with unparalleled prec March 23rd, 2021

A new industry standard for batteries: ultra-clean facility for graphene nanotube dispersions March 19th, 2021

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Tiny, Wireless, Injectable Chips Use Ultrasound to Monitor Body Processes May 12th, 2021

Better metric for thermoelectric materials means better design strategies: New quantity helps experimentally classify dimensionality of thermoelectric materials April 15th, 2021

Better metric for thermoelectric materials means better design strategies: New quantity helps experimentally classify dimensionality of thermoelectric materials April 15th, 2021

In-situ nanoscale insights into the evolution of solid electrolyte interphase shells April 2nd, 2021

Artificial Intelligence

Graphene key for novel hardware security May 10th, 2021

With new optical device, engineers can fine tune the color of light April 23rd, 2021

New study investigates photonics for artificial intelligence and neuromorphic computing February 1st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Dental

Innovations in dentistry: Navigational surgery, robotics, and nanotechnology October 2nd, 2020

Gas storage method could help next-generation clean energy vehicles: Tremendous amounts of hydrogen and methane can be stored in nanoscopic pores April 17th, 2020

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

Dental plaque is no match for catalytic nanoparticles: Twice-daily rinses of FDA-approved nanoparticles broke apart oral biofilms and prevented tooth decay in a study led by Penn researchers August 8th, 2018

Construction

A quantum material-based diagnostic paint to sense problems before structural failure October 23rd, 2020

Discovery of disordered nanolayers in intermetallic alloys: Resolving alloys' strength-ductility trade-off and thermal instability July 24th, 2020

Sustainable structural material for plastic substitute May 11th, 2020

Scientists came up with nanoconcrete for casting under negative temperature conditions March 6th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project