Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Diamond glitter: A play of colors with artificial DNA crystals

Professor Tim Liedl with PhD Student Xin Yin (left) and Postdoc Gregor Posnjak (right) in the lab

CREDIT
Stephan Hoeck / LMU
Professor Tim Liedl with PhD Student Xin Yin (left) and Postdoc Gregor Posnjak (right) in the lab CREDIT Stephan Hoeck / LMU

Abstract:
Using DNA origami, LMU researchers have built a diamond lattice with a periodicity of hundreds of nanometers – a new approach for manufacturing semiconductors for visible light.

Diamond glitter: A play of colors with artificial DNA crystals

München, Germany | Posted on May 17th, 2024

The shimmering of butterfly wings in bright colors does not emerge from pigments. Rather, it is photonic crystals that are responsible for the play of colors. Their periodic nanostructure allows light at certain wavelengths to pass through while reflecting other wavelengths. This causes the wing scales, which are in fact transparent, to appear so magnificently colored. For research teams, the manufacture of artificial photonic crystals for visible light wavelengths has been a major challenge and motivation ever since they were predicted by theorists more than 35 years ago. “Photonic crystals have a versatile range of applications. They have been employed to develop more efficient solar cells, innovative optical waveguides, and materials for quantum communication. However, they have been very laborious to manufacture,” explains Dr. Gregor Posnjak. The physicist is a postdoc in the research group of LMU Professor Tim Liedl, whose work is funded by the “e-conversion” Cluster of Excellence and the European Research Council. Using DNA nanotechnology, the team has developed a new approach for the manufacture of photonic crystals. Their results have now been published in the journal Science.

Diamond structure out of strands of DNA

In contrast to lithographic techniques, the LMU team uses a method called DNA origami to design and synthesize building blocks, which then self-assemble into a specific lattice structure. “It’s long been known that the diamond lattice theoretically has an optimal geometry for photonic crystals. In diamonds, each carbon atom is bonded to four other carbon atoms. Our challenge consisted in enlarging the structure of a diamond crystal by a factor of 500, so that the spaces between the building blocks correspond with the wavelength of light,” explains Tim Liedl. “We increased the periodicity of the lattice to 170 nanometers by replacing the individual atoms with larger building blocks – in our case, through DNA origami,” says Posnjak.

The perfect molecule folding technique

What sounds like magic is actually a specialty of the Liedl group, one of the world’s leading research teams in DNA origami and self-assembly. For this purpose, the scientists use a long, ring-shaped DNA strand (consisting of around 8,000 bases) and a set of 200 short DNA staples. “The latter control the folding of the longer DNA strand into virtually any shape at all – akin to origami masters, who fold pieces of paper into intricate objects. As such, the clamps are a means of determining how the DNA origami objects combine to form the desired diamond lattice,” says the LMU postdoctoral researcher. The DNA origami building blocks form crystals of approximately ten micrometers in size, which are deposited on a substrate and then passed on to a cooperating research group from the Walter Schottky Institute at the Technical University of Munich (TUM): The team led by Professor Ian Sharp (also funded by the “e-conversion” Cluster of Excellence) is able to deposit individual atomic layers of titanium dioxide on all surfaces of the DNA origami crystals. “The DNA origami diamond lattice serves as scaffolding for titanium dioxide, which, on account of its high index of refraction, determines the photonic properties of the lattice. After coating, our photonic crystal does not allow UV light with a wavelength of about 300 nanometers to pass through, but rather reflects it,” explains Posnjak. The wavelength of the reflected light can be controlled via the thickness of the titanium dioxide layer.

DNA origami could boost photonics

For photonic crystals that work in the infrared range, classic lithographic techniques are suitable but laborious and expensive. In the wavelength range of visible and UV light, lithographic methods have not been successful to date. “Consequently, the comparatively easy manufacturing process using the self-assembly of DNA origami in an aqueous solution offers a powerful alternative for producing structures in the desired size cost-effectively and in larger quantities,” says Prof. Tim Liedl. He is convinced that the unique structure with its large pores, which are chemically addressable, will stimulate further research – for example, in the domain of energy harvesting and storage. In the same issue of Science, a collaboration led by prof. Petr Šulc of Arizona State University and TUM presents a theoretical framework for designing diverse crystalline lattices from patchy colloids, and experimentally demonstrates the method by utilizing DNA origami building blocks to form a pyrochlore lattice, which potentially also could be used for photonic applications.

####

For more information, please click here

Contacts:
Media Contact

Constanze Drewlo
Ludwig-Maximilians-Universität München

Office: 089-218-06529
Expert Contacts

Dr. Gregor Posnjak
Research Group on Molecular Self-Assembly and Nanoengineering, Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München

Prof. Tim Liedl
Research Group on Molecular Self-Assembly and Nanoengineering, Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München

Copyright © Ludwig-Maximilians-Universität München

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method in the fight against forever chemicals September 13th, 2024

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Possible Futures

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Chip Technology

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Nanomedicine

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Discoveries

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Announcements

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

New method in the fight against forever chemicals September 13th, 2024

Nanobiotechnology

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project