Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression

The level of circZFR is associated with CRC stage and survival, and circZFR promotes CRC growth and metastasis in vivo

CREDIT
©Science China Press
The level of circZFR is associated with CRC stage and survival, and circZFR promotes CRC growth and metastasis in vivo CREDIT ©Science China Press

Abstract:
This study is reported by Zhangfa Song’s group from the Sir Run Run Shaw Hospital, Zhejiang University School of Medicine. The research team identified circZFR using circRNA microarray and competing endogenous RNA (ceRNA) microarray, and they confirmed that circZFR is a promising biomarker for CRC diagnosis and prognosis. Currently, the morbidity and mortality of CRC remain high due to the lack of early symptoms and effective early screening technology. Metastasis and recurrence remain the most common causes of death related to CRC. Therefore, it is crucial to find novel biomarkers for CRC diagnosis and prognosis, as well as unravel their mechanisms of action.

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression

Beijing, China | Posted on July 5th, 2024

The team studied the function of circZFR, as well as the upstream and downstream events that promote CRC progression. Highly expressed circZFR promotes the proliferation and migration of CRC cells directly or via exosomes. In mouse models, circZFR stimulates tumor growth, and lung and liver metastasis. Mechanistically, ESRP1 in CRC cells may enhance the production of circZFR. The oncogenic protein BCLAF1 binds to circZFR, preventing the ubiquitinated degradation of BCLAF1. In addition, circZFR sponges miR-3127-5p to boost RTKN2 expression. These findings support the use of circZFR as a potential biomarker for CRC diagnosis and a desirable target for future treatment.

The study further shows that the TCP1-CD-QDs nanocarrier is able to carry and deliver circZFR siRNA (si-circZFR) to the vasculature of CRC tissues, effectively inhibiting tumor growth. “The unique looping structure of circRNAs renders them extremely stable, implying that these molecules have a strong biomarker potential for early screening, diagnosis, and prognosis. Our study on circZFR will provide help for researchers in this field to explore more novel functional circRNAs”. Zhangfa Song – the lead author of the study – noted.

####

For more information, please click here

Contacts:
Media Contact

Bei Yan
Science China Press

Expert Contact

Zhangfa Song
Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

News and information

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Cancer

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

University of Toronto researchers discover new lipid nanoparticle that shows muscle-specific mRNA delivery, reduces off-target effects: Study findings make significant contribution to generating tissue-specific ionizable lipids and prompts rethinking of mRNA vaccine design princi December 8th, 2023

Possible Futures

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Nanomedicine

How cells repair DNA’s protective barrier: a pathway to address a rare genetic disorder characterized by rapid aging in children December 13th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Discoveries

How cells repair DNA’s protective barrier: a pathway to address a rare genetic disorder characterized by rapid aging in children December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Announcements

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Nanobiotechnology

How cells repair DNA’s protective barrier: a pathway to address a rare genetic disorder characterized by rapid aging in children December 13th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project