Home > Press > Unveiling the power of hot carriers in plasmonic nanostructures
Depending on the excitation regime, the generated hot-carriers result in the interconnected optical nonlinear, photochemical and/or thermal effects. Credit by Jacob Khurgin, Anton Yu. Bykov, Anatoly V. Zayats |
Abstract:
A new scientific review explores the exciting potential of hot carriers, energetic electrons generated by light in plasmonic nanostructures. These tiny structures hold immense promise for future technologies due to their unique way of interacting with light and creating hot carriers.
Hot carriers are electrons with a surplus of energy. When light strikes a plasmonic nanostructure, it can excite these electrons, pushing them out of equilibrium. This non-equilibrium state unlocks a range of fascinating phenomena. Hot carriers can be used to control light itself, potentially leading to novel applications in light-based technologies. They can also drive chemical reactions at the surface of the nanostructure, paving the way for advanced photocatalysis. Also, hot carriers can generate electrical currents, opening doors for new ultrafast detectors and optoelectronic devices.
This research review illuminates the intricate details of hot carrier generation and behavior in plasmonic nanostructures. It explores how light interacts with these structures to create hot carriers, how hot carriers lose their energy and return to equilibrium, and methods to control hot carrier dynamics for specific applications.
By harnessing the power of hot carriers, scientists envision a future filled with innovative technologies. Hot carriers could enable ultrafast electronics and optoelectronics, boost the efficiency of solar cells, and even revolutionize nanomedicine through precise control. This research paves the way for further exploration and development of hot carrier technologies, bringing us closer to a future shaped by light and nanostructures.
####
Contacts:
Media Contact
Wei Zhao
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS
Office: 86-431-861-76852
Expert Contact
Anatoly V. Zayats
King’s College London
Copyright © Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Quantum pumping in molecular junctions August 16th, 2024
Organic Electronics
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Plasmonics
A new dimension in magnetism and superconductivity launched November 5th, 2021
Patterning silicon at the one nanometer scale: Scientists engineer materials’ electrical and optical properties with plasmon engineering August 13th, 2021
TPU scientists offer new plasmon energy-based method to remove CO2 from atmosphere March 19th, 2021
Possible Futures
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Quantum pumping in molecular junctions August 16th, 2024
Chip Technology
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Quantum pumping in molecular junctions August 16th, 2024
Nanomedicine
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024
Discoveries
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Quantum pumping in molecular junctions August 16th, 2024
Announcements
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Energy
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||