Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers’ approach may protect quantum computers from attacks

Dr. Kanad Basu (left) and his colleagues developed a way to counteract the impact of attacks designed to disrupt artificial intelligence’s ability to make decisions or solve tasks in quantum computers. His team includes computer engineering doctoral students Sanjay Das, Navnil Choudhury (sitting) and Shamik Kundu (right).

CREDIT
The University of Texas at Dallas
Dr. Kanad Basu (left) and his colleagues developed a way to counteract the impact of attacks designed to disrupt artificial intelligence’s ability to make decisions or solve tasks in quantum computers. His team includes computer engineering doctoral students Sanjay Das, Navnil Choudhury (sitting) and Shamik Kundu (right). CREDIT The University of Texas at Dallas

Abstract:
Quantum computers, which can solve several complex problems exponentially faster than classical computers, are expected to improve artificial intelligence (AI) applications deployed in devices like autonomous vehicles; however, just like their predecessors, quantum computers are vulnerable to adversarial attacks.

Researchers’ approach may protect quantum computers from attacks

Dallas, TX | Posted on March 8th, 2024

A team of University of Texas at Dallas researchers and an industry collaborator have developed an approach to give quantum computers an extra layer of protection against such attacks. Their solution, Quantum Noise Injection for Adversarial Defense (QNAD), counteracts the impact of attacks designed to disrupt inference — AI’s ability to make decisions or solve tasks. The team will present research that demonstrates the method at the IEEE International Symposium on Hardware Oriented Security and Trust on May 6-9 in Washington, D.C.

“Adversarial attacks designed to disrupt AI inference have the potential for serious consequences,” said Dr. Kanad Basu, assistant professor of electrical and computer engineering in the Erik Jonsson School of Engineering and Computer Science. “An attack can be likened to someone putting a sticker over a stop sign: An autonomous vehicle may not recognize the stop sign properly, interpreting it as a reduced speed sign and hence, fail to stop. Our goal with this approach is to make quantum computer applications more secure.”

Quantum computing is a rapidly emerging technology that uses quantum mechanics — the study of how particles behave at the subatomic level — to solve complex computational problems.

Like bits in traditional computers, qubits represent the fundamental unit of information in quantum computers. Bits in classical computers represent 1 or 0. Qubits, however, take advantage of the principle of superposition, which means they can simultaneously be in a state of 0 and 1; therefore, qubits can represent two states, resulting in dramatic speedup capabilities compared to traditional computers. As an example, due to their computing power, quantum computers have the potential to break highly secure encryption systems.

One of the challenges of quantum computers is their susceptibility to “noise,” or interference, due to factors including temperature fluctuations, magnetic fields or imperfections in hardware components. Quantum computers also are prone to “crosstalk,” or unintended interactions between qubits. Noise and crosstalk can result in computing errors.

The researchers’ approach leverages intrinsic quantum noise and crosstalk to counteract adversarial attacks. The method introduces crosstalk into the quantum neural network (QNN), a form of machine learning in which large datasets train computers to perform tasks, including detecting objects such as stop signs or other computer vision responsibilities.

“The noisy behavior of quantum computers actually reduces the impact of attacks,” said Basu, who is senior author of the study. “We believe this is a first-of-its-kind approach that can supplement other defenses against adversarial attacks.”

The researchers demonstrated that, during an attack, an AI application was 268% more accurate with QNAD than without it.

Shamik Kundu, a computer engineering doctoral student and a first co-author, said the approach is designed to supplement other techniques to protect quantum computer security. Kundu likened the framework’s benefit to that of seat belts in cars.

“In case of a crash, if we do not wear the seat belt, the impact of the accident is much greater,” Kundu said. “On the other hand, if we wear the seat belt, even if there is an accident, the impact of the crash is lessened. The QNAD framework operates akin to a seat belt, diminishing the impact of adversarial attacks, which symbolize the accident, for a QNN model.”

Other study authors include computer engineering doctoral students Navnil Choudhury, who is also a first author, and Sanjay Das. Also collaborating was Dr. Arnab Raha, a senior research scientist at Intel Corp.

The research was funded by the National Science Foundation.

####

For more information, please click here

Contacts:
Kim Horner
University of Texas at Dallas

Office: 972-883-4463

Copyright © University of Texas at Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Quantum Physics

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Quantum communication

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Quantum Computing

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Automotive/Transportation

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Artificial Intelligence

Autonomous AI assistant to build nanostructures: An interdisciplinary research group at TU Graz is working on constructing logic circuits through the targeted arrangement of individual molecules: Artificial intelligence should speed up the process enormously January 17th, 2025

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project