Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > HKUST researchers develop new integration technique for efficient coupling of III-V and silicon

The study was selected as cover of the journal Laser & Photonics Reviews.

CREDIT
HKUST
The study was selected as cover of the journal Laser & Photonics Reviews. CREDIT HKUST

Abstract:
Researchers at the Hong Kong University of Science and Technology (HKUST) have developed a new integration technique for efficient integration of III-V compound semiconductor devices and silicon, paving the way for photonic integration at low cost, large volume, and high speed and throughput that could revolutionize data communications.

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon

Hong Kong, China | Posted on February 16th, 2024

Unlike conventional integrated circuits, or microchips, that use electrons, photonic integrated circuits use photons, or particles of light. Photonic integration combines light and electronics to speed up data transfer. Silicon photonics (Si-photonics), in particular, is at the forefront of this revolution as it enables the creation of high-speed, low-cost connections that can handle massive amounts of data at once.


While silicon can handle passive optical functions, it struggles with active tasks, such as generating light (lasers) or detecting it (photodetectors) – both key components for data generation and readout. This necessitates the integration of III-V semiconductor (which uses materials from groups III and V of the periodic table) onto a silicon substrate for complete functionality and enhanced efficiency.


But while III-V semiconductors do the active tasks well, they do not naturally work well with silicon. The team, led by Prof. Ying XUE, Research Assistant Professor and Prof. Kei May LAU, Research Professor of the Division of Emerging Interdisciplinary Areas (EMIA), tackled this challenge by finding a way to make III-V devices work efficiently with silicon.
They developed a technique called lateral aspect ratio trapping (LART) – a novel selective direct epitaxy method that can selectively grow III-V materials on silicon-on-insulator (SOI) in a lateral direction without the need for thick buffers.


While no integration methods reported in literature could solve the challenge with high coupling efficiency and high production volume, their method achieved an in-plane III-V laser, so that the III-V laser can couple with Si in the same plane, which is efficient.


“Our approach addressed the mismatch of III-V devices and Si. It achieved excellent performance of III-V devices and made it easy and efficient to couple III-V with Si,” Prof. XUE said.


In the past decades, data traffic has grown exponentially driven by emerging technologies, such as big data, cloud applications, and sensors. The field of integrated circuits (ICs), also known as microelectronics, has enabled that growth by making electronic devices smaller and faster thanks to Moore’s Law, an observation that the number of transistors on a microchip doubles about every two years. But the continued explosion of data traffic has pushed traditional electronic devices to their limits.


The start of the Zettabyte Era in 2016 ushered in soaring growth in data generation, processing, transmission, storage, and readout. This surge in data poses critical challenges of speed, bandwidth, cost, and power consumption. This is where photonic integration, in particular Si-photonics, comes in.


In the next steps, the team plans to show that III-V lasers integrated with silicon waveguides can perform well, as in having a low threshold, high output power, long lifetime, and the ability to operate at high temperatures.


There are key scientific challenges to address before this technique could be used in real life, she said. But it will enable new-generation communications and various emerging applications and research areas, including supercomputers, artificial intelligence (AI), biomedicine, automotive applications, and neural and quantum networks.
The study was recently published in the journal Laser & Photonics Reviews and selected as cover.


On a related note, Prof. Xue recently received a grant worth US$100,000 from the 2023 Optica Foundation Challenge for her innovations in mitigating the limitations associated with photonic integrated circuits. The grant will be used to advance her research.

####

For more information, please click here

Contacts:
Janice Tsang
Hong Kong University of Science and Technology

Copyright © Hong Kong University of Science and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

New method in the fight against forever chemicals September 13th, 2024

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Quantum communication

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Wireless/telecommunications/RF/Antennas/Microwaves

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Chip-based dispersion compensation for faster fibre internet: SUTD scientists developed a novel CMOS-compatible, slow-light-based transmission grating device for the dispersion compensation of high-speed data, significantly lowering data transmission errors and paving the way for June 30th, 2023

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Possible Futures

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Chip Technology

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Optical computing/Photonic computing

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Discoveries

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Announcements

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

New method in the fight against forever chemicals September 13th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Artificial Intelligence

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project