Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Simulating magnetization in a Heisenberg quantum spin chain

Simulating magnetization in a Heisenberg quantum spin chain

CREDIT
Google LLC
Simulating magnetization in a Heisenberg quantum spin chain CREDIT Google LLC

Abstract:
The rapid progress of quantum simulators is now enabling them to study problems that before have been limited to the domain of theoretical physics and numerical simulation. A team of researchers at Google Quantum AI and their collaborators showed this novel capability by studying dynamics in 1D quantum magnets, specifically chains of spin-1⁄2 particles. They investigated a statistical mechanics problem that has been the focus of attention in recent years: Could such a 1D quantum magnet be described by the same equations as snow falling and clumping together? It seems strange that the two systems would be connected, but in 2019, researchers at the University of Ljubljana found striking numerical evidence that led them to conjecture that the spin dynamics in the spin-1⁄2 Heisenberg model are in the Kardar-Parisi-Zhang (KPZ) universality class, based on the scaling of the infinite-temperature spin-spin correlation function.

Simulating magnetization in a Heisenberg quantum spin chain

Mountain View, CA | Posted on April 5th, 2024

The KPZ equation was originally introduced to describe the stochastic, nonlinear dynamics of driven interfaces and has proven to apply to a wide range of classical systems, such as growing fronts of forest fires, that belong to the KPZ universality class. It would be surprising if the spin-1⁄2 Heisenberg model were in this universality class, as conjectured by the researchers at Ljubljana, because it is linear and non-stochastic, unlike the other systems in this class.

In 2022, quantum simulations started shedding light on this question with cold atoms experiments carried out by researchers at the Max-Planck-Institut für Quantenoptik. By studying the relaxation of an initial imbalance of the magnetic spins, they found experimental evidence in support of this conjecture, which was published in Science in 2022.

To further explore spin dynamics in this model, the Google collaboration leveraged the ability of their superconducting quantum processor to quickly acquire large amounts of experimental data, allowing for a detailed study of the underlying statistics. Specifically, using a chain of 46 superconducting qubits, they
measured the probability distribution of how many spins crossed the center of the chain, a quantity known as the transferred magnetization. The mean and variance of this distribution showed behavior consistent with being in the KPZ universality class, in full agreement with the findings of the Max-Planck-Institut group. It was only when they carefully examined the third (skewness) and fourth (kurtosis) moments of the transferred magnetization that they found clear deviations from the predictions for the KPZ universality class, indicating that the conjecture does not hold on the timescales probed in the experiment.

Generally, measuring the distribution of a stochastic variable with sufficient precision such that the higher moments can be resolved with sufficient signal to noise is extremely challenging; it needs rapid sampling, high level of control, and, for quantum processors, quantum coherence. This work, published in Science on April 5th 2024, excellently represents the current exciting era of quantum simulation, in which quantum processors allow for deepening our understanding of novel physical phenomena.

####

For more information, please click here

Contacts:
Jason Freidenfelds
Google LLC

Cell: 415-225-2994

Copyright © Google LLC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

Magnetism/Magnons

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Quantum Physics

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

News and information

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Possible Futures

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Quantum Computing

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Discoveries

How cells repair DNA’s protective barrier: a pathway to address a rare genetic disorder characterized by rapid aging in children December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Announcements

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Artificial Intelligence

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Quantum nanoscience

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project