Home > Press > Simulating magnetization in a Heisenberg quantum spin chain
Simulating magnetization in a Heisenberg quantum spin chain CREDIT Google LLC |
Abstract:
The rapid progress of quantum simulators is now enabling them to study problems that before have been limited to the domain of theoretical physics and numerical simulation. A team of researchers at Google Quantum AI and their collaborators showed this novel capability by studying dynamics in 1D quantum magnets, specifically chains of spin-1⁄2 particles. They investigated a statistical mechanics problem that has been the focus of attention in recent years: Could such a 1D quantum magnet be described by the same equations as snow falling and clumping together? It seems strange that the two systems would be connected, but in 2019, researchers at the University of Ljubljana found striking numerical evidence that led them to conjecture that the spin dynamics in the spin-1⁄2 Heisenberg model are in the Kardar-Parisi-Zhang (KPZ) universality class, based on the scaling of the infinite-temperature spin-spin correlation function.
The KPZ equation was originally introduced to describe the stochastic, nonlinear dynamics of driven interfaces and has proven to apply to a wide range of classical systems, such as growing fronts of forest fires, that belong to the KPZ universality class. It would be surprising if the spin-1⁄2 Heisenberg model were in this universality class, as conjectured by the researchers at Ljubljana, because it is linear and non-stochastic, unlike the other systems in this class.
In 2022, quantum simulations started shedding light on this question with cold atoms experiments carried out by researchers at the Max-Planck-Institut für Quantenoptik. By studying the relaxation of an initial imbalance of the magnetic spins, they found experimental evidence in support of this conjecture, which was published in Science in 2022.
To further explore spin dynamics in this model, the Google collaboration leveraged the ability of their superconducting quantum processor to quickly acquire large amounts of experimental data, allowing for a detailed study of the underlying statistics. Specifically, using a chain of 46 superconducting qubits, they
measured the probability distribution of how many spins crossed the center of the chain, a quantity known as the transferred magnetization. The mean and variance of this distribution showed behavior consistent with being in the KPZ universality class, in full agreement with the findings of the Max-Planck-Institut group. It was only when they carefully examined the third (skewness) and fourth (kurtosis) moments of the transferred magnetization that they found clear deviations from the predictions for the KPZ universality class, indicating that the conjecture does not hold on the timescales probed in the experiment.
Generally, measuring the distribution of a stochastic variable with sufficient precision such that the higher moments can be resolved with sufficient signal to noise is extremely challenging; it needs rapid sampling, high level of control, and, for quantum processors, quantum coherence. This work, published in Science on April 5th 2024, excellently represents the current exciting era of quantum simulation, in which quantum processors allow for deepening our understanding of novel physical phenomena.
####
For more information, please click here
Contacts:
Jason Freidenfelds
Google LLC
Cell: 415-225-2994
Copyright © Google LLC
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Quantum pumping in molecular junctions August 16th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Quantum Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Magnetism/Magnons
Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023
Study on Magnetic Force Microscopy wins 2023 Advances in Magnetism Award: Analysis of finite size effects reveals significant consequences for density measurements November 3rd, 2023
Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Possible Futures
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Quantum pumping in molecular junctions August 16th, 2024
Quantum Computing
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Discoveries
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Quantum pumping in molecular junctions August 16th, 2024
Announcements
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Artificial Intelligence
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
New chip opens door to AI computing at light speed February 16th, 2024
HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024
Quantum nanoscience
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
What is "time" for quantum particles? Publication by TU Darmstadt researchers in renowned journal "Science Advances" May 17th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||