Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas.

Today's catalysts for removing unburnt methane from natural gas engine exhaust are either inefficient at low, start-up temperatures or break down at higher operating temperatures. A new single-atom catalyst developed by SLAC National Accelerator Laboratory and Washington State University solves both these problems and removes 90% of the methane. This illustration depicts individual palladium atoms (white) removing methane (white bubbles) at the surface of the catalyst.

CREDIT
Cortland Johnson/Pacific Northwest National Laboratory
Today's catalysts for removing unburnt methane from natural gas engine exhaust are either inefficient at low, start-up temperatures or break down at higher operating temperatures. A new single-atom catalyst developed by SLAC National Accelerator Laboratory and Washington State University solves both these problems and removes 90% of the methane. This illustration depicts individual palladium atoms (white) removing methane (white bubbles) at the surface of the catalyst. CREDIT Cortland Johnson/Pacific Northwest National Laboratory

Abstract:
Individual palladium atoms attached to the surface of a catalyst can remove 90% of unburned methane from natural-gas engine exhaust at low temperatures, scientists reported today in the journal Nature Catalysis.

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas.

Menlo Park, CA | Posted on July 21st, 2023

While more research needs to be done, they said, the advance in single atom catalysis has the potential to lower exhaust emissions of methane, one of the worst greenhouse gases, which traps heat at about 25 times the rate of carbon dioxide.

Researchers from the Department of Energy’s SLAC National Accelerator Laboratory and Washington State University showed that the catalyst removed methane from engine exhaust at both the lower temperatures where engines start up ­­­and the higher temperatures where they operate most efficiently, but where catalysts often break down.

“It’s almost a self-modulating process which miraculously overcomes the challenges that people have been fighting – low temperature inactivity and high temperature instability,” said Yong Wang, Regents Professor in WSU’s Gene and Linda Voiland School of Chemical Engineering and Bioengineering and one of four lead authors on the paper.

A growing source of methane pollution

Engines that run on natural gas power 30 million to 40 million vehicles worldwide and are popular in Europe and Asia. The natural gas industry also uses them to run compressors that pump gas to people’s homes. They are generally considered cleaner than gasoline or diesel engines, creating less carbon and particulate pollution.

However, when natural-gas engines start up, they emit unburnt, heat-trapping methane because their catalytic converters don’t work well at low temperatures. Today's catalysts for methane removal are either inefficient at lower exhaust temperatures or they severely degrade at higher temperatures.

“There’s a big drive towards using natural gas, but when you use it for combustion engines, there will always be unburnt natural gas from the exhaust, and you have to find a way to remove that. If not, you cause more severe global warming,” said co-author Frank Abild-Pedersen, a SLAC staff scientist and co-director of the lab’s SUNCAT Center for Interface Science and Catalysis, which is run jointly with Stanford University. “If you can remove 90% of the methane from the exhaust and keep the reaction stable, that’s tremendous.”

A catalyst with single atoms of the chemically active metal dispersed on a support also uses every atom of the expensive and precious metal, Wang added.

“If you can make them more reactive,” he said, “that’s the icing on the cake.”

Unexpected help from a fellow pollutant

In their work, the researchers showed that their catalyst made from single palladium atoms on a cerium oxide support efficiently removed methane from engine exhaust, even when the engine was just starting.

They also found that trace amounts of carbon monoxide that are always present in engine exhaust played a key role in dynamically forming active sites for the reaction at room temperature. The carbon monoxide helped the single atoms of palladium migrate to form two- or three-atom clusters that efficiently break apart the methane molecules at low temperatures.

Then, as the exhaust temperatures rose, the clusters broke up into single atoms and redispersed, so that the catalyst was thermally stable. This reversible process enabled the catalyst to work effectively and used every palladium atom the entire time the engine was running – including when it started cold.

“We were really able to find a way to keep the supported palladium catalyst stable and highly active and, because of the diverse expertise across the team, to understand why this was occurring,” said SLAC staff scientist Christopher Tassone.

The researchers are working to further advance the catalyst technology. They would like to better understand why palladium behaves in one way while other precious metals such as platinum act differently.

The research has a way to go before it will be put inside a car, but the researchers are collaborating with industry partners as well as with DOE’s Pacific Northwest National Laboratory to move the work closer to commercialization.

Along with Wang, Abild-Pedersen, and Tassone, Dong Jiang, senior research associate in WSU’s Voiland School, also led the work. The work was funded by the DOE Office of Science, and included research carried out at SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL), Argonne National Laboratory’s Advanced Photon Source (APS) and the National Energy Research Scientific Computing Center (NERSC), which are all DOE Office of Science user facilities.

This article has been adapted from a press release written by Washington State University.

####

About DOE/SLAC National Accelerator Laboratory
SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio- and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

For more information, please click here

Contacts:
Glennda Chui
DOE/SLAC National Accelerator Laboratory

Office: 510-507-2766

Copyright © DOE/SLAC National Accelerator Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Citation: Dong Jiang et al., Nature Catalysis, 20 July 2023 (10.1038/s41929-023-00983-8):

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

A non-covalent bonding experience: Scientists discover new structures for unique hybrid materials by altering their chemical bonds July 21st, 2023

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project