Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items

Abstract:
• Polymer fibers with graphene nanotubes combine the flexibility of synthetic fiber with very high electrical conductivity. The nanotubes can be added into melted polypropylene or polyamide to provide electrical conductivity.
• An ultrafine conductive fiber is used for fabric or mesh that can then be integrated into a polymer system.
• Such electrically conductive heating fibers are required in the medical, agricultural, construction, oil and gas, textile, automotive, and aerospace industries.

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items

Luxembourg | Posted on February 11th, 2022

From the warming of seating to the heating of industrial and living areas, from the heating of cars interior parts to the de-icing of roofs—all these challenges require flexible heating elements that allow temperature control. AMPERETEX has developed an ultrafine polymer fiber with OCSiAl’s TUBALL graphene nanotubes, also known as single wall carbon nanotubes. “A current equivalent to an ordinary incandescent lamp with a power of 75 W is enough to heat polymer material with a mesh made from such a fiber with nanotubes. The solution is safe for people—the voltage of clothing made of fabric with nanotubes is only 5 V,” said Pavel Pogrebnyakov, Founder and CEO of AMPERETEX.



“Graphene nanotubes are one of the highest performing conductors on Earth. At the same time, unlike other carbon additives, they are very flexible. Their shape is similar to human hair, but 50,000 times thinner. Due to their unique properties, the dosage of graphene nanotubes required to modify polymer fibers can be so low that it doesn’t affect filament production or characteristics,” said Dr. Christian Maus, Development and Support Leader for Thermoplastics at OCSiAl Group. The graphene nanotubes are available as concentrates that can be added into melted polypropylene or polyamide, for example.



Heating mesh made of the innovative fibers is integrated into flexible material or complex-shaped composite elements. Laboratory tests showed a fiber durability of 30,000 cycles, which is compatible to a 30-year service life. Electrically conductive heating meshes have successfully passed testing in various projects, among which are an anti-icing roof and a bus stop: an anti-slip coating with integrated AMPERETEX heating elements and embedded automatic heating sensors.



“The market for the application of such fibers is huge. This includes the medical, agricultural, construction, oil and gas, automotive, and aerospace industries. Currently, we have entered production of synthetic heating fabrics at industrial-scale volumes. This year, we plan to release a line of products for heating in previously unavailable areas. We are trying to reduce energy consumption and create solutions for the B2B sector in response to a specific request. The next step is the usage of these elements for heating of hard-to-reach objects and products with complex geometric configurations,” noted Pavel Pogrebnyakov.

####

About OCSiAl Group
Headquartered in Luxembourg, OCSiAl is the world’s largest manufacturer of graphene nanotubes, also known as single wall carbon nanotubes. It employs more than 450 people worldwide in locations including the United States, Europe, China, Russia, India, Japan, and South Korea. Current annual production capacity is 90 tons, which accounts for 97% of the world’s graphene nanotube production capacity. OCSiAl has developed more than 40 graphene nanotube products aimed at enhancing polymer materials, including thermosets, thermoplastics, elastomers, and electrochemical power sources. Read more at tuball.com



About AMPERETEX

AMPERETEX is a Russian company producing heating fabrics based on an electrically conductive fiber with the addition of polymers and nano-additives. The company's plant was built in the Khrabrovo Industrial Park in the Kaliningrad Region. The geographical position of the westernmost region of Russia and the status of a special economic zone resident allows the company's partners to supply raw materials and finished products at the lowest cost both to the CIS market and to the markets of the EU and North America. Read more at https://amperetex.ru/en/

For more information, please click here

Contacts:
Anastasiya Tarasenko
PR & Advertising Manager
OCSiAl Group
+7 952 944 25 53

Copyright © OCSiAl Group

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Possible Futures

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Nanomedicine

Cutting-edge combination shows promise in patients with chemotherapy-resistant urothelial cancer November 4th, 2022

Advanced nanoparticles provide new weapon to fight difficult cancers: Researchers use nanoparticles to deliver a bacterially derived compound that targets the STING pathway to suppress tumor growth and metastasis by disrupting blood vessels and stimulating immune response October 28th, 2022

Smart materials: metal cations-recognizable thermoresponsive polymers: Osaka Metropolitan University scientists developed a novel polymer, the thermoresponsiveness of which can easily be regulated by changing the type and mixing ratio of ionic species October 14th, 2022

Quantum-Si’s next-generation single-molecule protein sequencing technology published in Science, signaling new era of life science and biomedical research: Semiconductor chip and Time Domain Sequencing™ technology will advance drug discovery and diagnostics, enabling people to li October 14th, 2022

Announcements

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Food/Agriculture/Supplements

Scientists offer solutions for risky tap water June 17th, 2022

Unprecedented view of a single catalyst nanoparticle at work: X-rays reveal compositional changes on active surface under reaction conditions October 1st, 2021

‘Anti-rust’ coating for plants protects against disease with cellulose nanofiber: Researchers from the University of Tsukuba find that coating soybean plant leaves with cellulose nanofiber offers resistance to infection by Asian soybean rust pathogen September 10th, 2021

Enhanced ambient ammonia photosynthesis by Mo-doped Bi5O7Br nanosheets with light-switchable oxygen vacancies September 3rd, 2021

Energy

Predicting the device performance of the perovskite solar cells from the experimental parameters through machine learning of existing experimental results November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

New insights into energy loss open doors for one up-and-coming solar tech November 18th, 2022

Advances in thermoelectric power generation possible with various ‘metal chalcogenide’ materials, recent review shows November 4th, 2022

Automotive/Transportation

NYU Tandon researchers explore a more frictionless future: Elisa Riedo’s and her lab team’s discovery of a fundamental law of friction leads to new materials that can minimize energy loss November 4th, 2022

Scientists count electric charges in a single catalyst nanoparticle down to the electron: Tenfold improvement in the sensitivity of electron holography reveals the net charge in a single platinum nanoparticle with a precision of just one electron, providing fundamental informatio October 14th, 2022

Scientists design electrolyte for lithium metal anodes for use in lithium metal batteries: Potential applications in metal battery systems that provide large-scale, sustainable energy October 7th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

Textiles/Clothing

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

The materials engineers are developing environmentally friendly materials: The materials engineers are developing environmentally friendly materials for producing smart textiles November 2nd, 2018

Aerospace/Space

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Surface microstructures of lunar soil returned by Chang’e-5 mission reveal an intermediate stage in space weathering process September 30th, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Construction

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022

You're so vein: Scientists discover faster way to manufacture vascular materials May 14th, 2021

A quantum material-based diagnostic paint to sense problems before structural failure October 23rd, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project