Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Flexible material shows potential for use in fabrics to heat, cool

Researchers reported in a new study that a material made of carbon nanotubes may be key in developing clothing that can heat or cool the wearer on demand. The film is twisted into a filament yarn and wound around a tube to show its flexibility. Credit: Kony Chatterjee.
Researchers reported in a new study that a material made of carbon nanotubes may be key in developing clothing that can heat or cool the wearer on demand. The film is twisted into a filament yarn and wound around a tube to show its flexibility. Credit: Kony Chatterjee.

Abstract:
A film made of tiny carbon nanotubes (CNT) may be a key material in developing clothing that can heat or cool the wearer on demand. A new North Carolina State University study finds that the CNT film has a combination of thermal, electrical and physical properties that make it an appealing candidate for next-generation smart fabrics.

Flexible material shows potential for use in fabrics to heat, cool

Durham, NC | Posted on July 3rd, 2020

The researchers were also able to optimize the thermal and electrical properties of the material, allowing the material to retain its desirable properties even when exposed to air for many weeks. Moreover, these properties were achieved using processes that were relatively simple and did not need excessively high temperatures.

"Many researchers are trying to develop a material that is non-toxic and inexpensive, but at the same time is efficient at heating and cooling," said Tushar Ghosh, co-corresponding author of the study. "Carbon nanotubes, if used appropriately, are safe, and we are using a form that happens to be inexpensive, relatively speaking. So it's potentially a more affordable thermoelectric material that could be used next to the skin." Ghosh is the William A. Klopman Distinguished Professor of Textiles in NC State's Wilson College of Textiles.

"We want to integrate this material into the fabric itself," said Kony Chatterjee, first author of the study and a Ph.D. student at NC State. "Right now, the research into clothing that can regulate temperature focuses heavily on integrating rigid materials into fabrics, and commercial wearable thermoelectric devices on the market aren't flexible either."

To cool the wearer, Chatterjee said, CNTs have properties that would allow heat to be drawn away from the body when an external source of current is applied.

"Think of it like a film, with cooling properties on one side of it and heating on the other," Ghosh said.

The researchers measured the material's ability to conduct electricity, as well as its thermal conductivity, or how easily heat passes through the material.

One of the biggest findings was that the material has relatively low thermal conductivity - meaning heat would not travel back to the wearer easily after leaving the body in order to cool it. That also means that if the material were used to warm the wearer, the heat would travel with a current toward the body, and not pass back out to the atmosphere.

The researchers were able to accurately measure the material's thermal conductivity through a collaboration with the lab of Jun Liu, an assistant professor of mechanical and aerospace engineering at NC State. The researchers used a special experimental design to more accurately measure the material's thermal conductivity in the direction that the electric current is moving within the material.

"You have to measure each property in the same direction to give you a reasonable estimate of the material's capabilities," said Liu, co-corresponding author of the study. "This was not an easy task; it was very challenging, but we developed a method to measure this, especially for thin flexible films."

The research team also measured the ability of the material to generate electricity using a difference in temperature, or thermal gradient, between two environments. Researchers said that they could take advantage of this for heating, cooling, or to power small electronics.

Liu said that while these thermoelectric properties were important, it was also key that they found a material that was also flexible, stable in air, and relatively simple to make.

"The point of this paper isn't that we achieved the best thermoelectric performance," Liu said. "We achieved something that can be used as a flexible, electronic, soft material that's easy to fabricate. It's easy to prepare this material, and easy to achieve these properties."

Ultimately, their vision for the project is to design a smart fabric that can heat and cool the wearer, along with energy harvesting. They believe that a smart garment could help reduce energy consumption.

"Instead of heating or cooling a whole dwelling or space, you would heat or cool the personal space around the body," Ghosh said. "If we could get the thermostat down a degree or two, that could save a tremendous amount of energy."

####

For more information, please click here

Contacts:
Kony Chatterjee

Tushar Ghosh

Jun Liu

Laura Oleniacz

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, "In-plane Thermoelectric Properties of Flexible and Room Temperature Processable Doped Carbon Nanotube Films," was published in the journal ACS Applied Energy Materials. The paper was co-authored by Ankit Negi and Kyunghoon Kim, who are Ph.D. students at NC State. The research was supported by the National Science Foundation, under grants 1943813 and 1622451, and by the NC State Chancellor's Innovation Fund.

Related News Press

News and information

New method in the fight against forever chemicals September 13th, 2024

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Wearable electronics

CityU awarded invention: Soft, ultrathin photonic material cools down wearable electronic devices June 30th, 2023

Liquid metal sticks to surfaces without a binding agent June 9th, 2023

Breaking through the limits of stretchable semiconductors with molecular brakes that harness light June 9th, 2023

Vertical electrochemical transistor pushes wearable electronics forward: Biomedical sensing is one application of efficient, low-cost transistors January 20th, 2023

Possible Futures

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Announcements

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

New method in the fight against forever chemicals September 13th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Textiles/Clothing

This new fabric coating could drastically reduce microplastic pollution from washing clothes: University of Toronto Engineering researchers are working on a fabric finish to prevent microplastic fibres from shedding during laundry cycles January 27th, 2023

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project