Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots

Schematic of biological presynaptic and postsynaptic neurons and a synapse (inset)

CREDIT
Korea Institute of Science and Technology(KIST)
Schematic of biological presynaptic and postsynaptic neurons and a synapse (inset) CREDIT Korea Institute of Science and Technology(KIST)

Abstract:
Advances in artificial intelligence (AI)-based technologies have led to an astronomical increase in the amounts of data available for processing by computers. Existing computing methods often process data sequentially and therefore have large time and power requirements for processing massive quantities of information. Hence, a transition to a new computing paradigm is required to solve such challenging issues. Researchers are currently working towards developing energy-efficient neuromorphic computing technologies and hardware that are capable of processing massive amounts of information by mimicking the structure and mechanisms of the human brain.

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots

Sejong, Korea | Posted on September 24th, 2021

The Korea Institute of Science and Technology (KIST) has reported that a research team led by Dr. Jung ah Lim and Dr. Hyunsu Ju of the Center for Opto-electronic Materials and Devices has successfully developed organic neurofiber transistors with an architecture and functions similar to those of neurons in the human brain, which can be used as a neural network. Research on devices that can function as neurons and synapses is needed so that large-scale computations can be performed in a manner similar to data processing in the human brain. Unlike previously developed devices that act as either neurons or synapses, the artificial neurofiber transistors developed at KIST can mimic the behaviors of both neurons and synapses. By connecting the transistors in arrays, one can easily create a structure similar to a neural network.

Biological neurons have fibrous branches that can receive multiple stimuli simultaneously, and signal transmissions are mediated by ion migrations stimulated by electrical signals. The KIST researchers developed the aforementioned artificial neurofibers using fibrous transistors previously developed by them in 2019. They devised memory transistors that remember the strengths of the applied electrical signals, similar to synapses, and transmit them via redox reactions between the semiconductor channels and ions within the insulators upon receiving the electrical stimuli from the neurofiber transistors. These artificialneurofibers also mimic the signal summation functionality of neurons.

The researchers created an artificial neural network system comprising 100 synapses using the artificial neurofibers and verified the stability of the device via speech recognition experiments. The proposed neural network was shown to achieve a recognition accuracy of 88.9% after training with speech data.

Dr. Jung Ah Lim and Dr. Hyunsu Ju note that "the novel artificial neurofiber device is an original technology that can be used to create large-scale, energy-efficient (~2 pJ/signal), and highly reliable artificial neural networks similar to that of the brain. Our artificial neurofiber device is flexible and may be used in AI-enabled wearable electronics made of semiconductor materials or in robotics."

####

About National Research Council of Science & Technology
The Korea Institute of Science and Technology(KIST). Founded as the first multidisciplinary government-funded research institute in Korea, KIST established a national development strategy based on science and technology and disseminated various essential industrial technologies. Now, half a century later, KIST is elevating Korea's status in the field of science and technology through world-leading fundamental technology R&D. Looking to the future, KIST will continue to strive to be a premier research institute, pursuing a brighter future for Korea and all of humanity.

The research was backed by the Ministry of Science and ICT and conducted as part of a institutional research program of KIST and the National Research Foundation of Korea’s mid-career Researcher Program. This study has been published in the latest issue of Advanced Materials (IF : 27.34, JCR top 1.61%).

For more information, please click here

Contacts:
Young Mi Kim
National Research Council of Science & Technology

Office: 82-442-877-376
Expert Contacts

Dr. Lim, Jung Ah
Korea Institute of Science and Technology

Office: +82-2-958-5378
Kim, Dohyun (PR Department)
Korea Institute of Science and Technology

Office: +82-2-958-6344

Copyright © National Research Council of Science & Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Detecting breast cancer through a spit test February 16th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Brain-Computer Interfaces

Developing nanoprobes to detect neurotransmitters in the brain: Researchers synthesize fluorescent molecularly imprinted polymer nanoparticles to sense small neurotransmitter molecules and understand how they govern brain activity March 3rd, 2023

Taking salt out of the water equation October 7th, 2022

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov's dog April 30th, 2021

CEA-Leti Announces EU Project to Mimic Multi-Timescale Processing of Biological Neural Systems: Targeted Applications Include High-Dimensional Distributed Environmental Monitoring, Implantable Medical-Diagnostic Microchips, Wearable Electronics & Human/Computer Interfaces April 23rd, 2021

Possible Futures

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Detecting breast cancer through a spit test February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Announcements

Detecting breast cancer through a spit test February 16th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Detecting breast cancer through a spit test February 16th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Artificial Intelligence

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

2D material reshapes 3D electronics for AI hardware December 8th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project