Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Novel nozzle saves crystals: Double flow concept widens spectrum for protein crystallography

Radiograph of the working nozzle, showing the inner protein stream surrounded by the ethanol jet.

Credit: Dominik Oberthuer, DESY
Radiograph of the working nozzle, showing the inner protein stream surrounded by the ethanol jet. Credit: Dominik Oberthuer, DESY

Abstract:
Scientists are interested in the spatial structure of proteins, as it reveals much about the workings of these biomolecules. This knowledge can lead to a better understanding of the functions of biomolecules and to tailored medicines. X-ray crystallography is the prime tool to solve protein structures. However, it requires to grow crystals of the proteins under investigation. When X-rays hit these crystals, they are diffracted from the atoms to form a characteristic pattern from which the spatial structure of the crystal -- and hence the protein molecules -- can be calculated.

Novel nozzle saves crystals: Double flow concept widens spectrum for protein crystallography

Hamburg, Germany | Posted on March 17th, 2017

However, many proteins do not like being squeezed into crystals as it contradicts their natural state. "Growing protein crystals is complex, the amount of protein that can be produced is often limited to few millionth of a gram and often only very tiny crystals can be obtained," says Dominik Oberthür from DESY, main author of the report. With the extremely bright flashes of X-ray free-electron lasers even those micro crystals can be analysed, but usually thousands of diffraction patterns are needed to solve the protein structure. Since the delicate micro crystals are completely vaporised by the intense X-ray flash -- after they delivered their diffraction pattern -- a stream of fresh micro crystals is sent through the laser beam. This concept is known as serial X-ray crystallography and has enabled the analysis of many previously inaccessible proteins.

Still, even those micro crystals are hard to obtain, and only a fraction of them is actually hit by an X-ray flash, depending on the geometry of the crystal stream and the technical parameters of the X-ray laser. "The less crystals, the less protein material you need, the more feasible is the analysis," emphasises Oberthür. Bajt's team conceived a new concept for a so-called double flow-focusing nozzle (DFFN) that greatly reduces protein crystal consumption. Usually, the protein crystals are injected with some carrier liquid ("buffer") into the X-ray beam, using a special nozzle. To form a thin jet, the carrier liquid is accelerated by a fast stream of gas surrounding the liquid. But to form a stable jet, a minimum flow rate is needed, usually wasting most of the crystals in the jet.

To overcome these difficulties the team added ethanol (alcohol) as a secondary "sheath" liquid between the gas and the buffer. This leads to the sheath liquid being accelerated by the gas. The crystals in their buffer can then be injected as a very thin stream into the centre of the ethanol jet. "Before, the buffer with the crystals had to do two jobs: form a stable jet and carry protein crystals," explained Juraj Knoška, a PhD student at CFEL and the University of Hamburg, who developed the nozzles. "Our approach separates these roles and uses the liquids that are best for the job." Ethanol has ideal characteristics to form a very stable jet, which flows with just a fine stream of the crystal carrying buffer in the centre. This way, the flow rate of the buffer could be reduced from about 40 micro litres (millionths of a litre) to just 2 micro litres per minute. Also, the fine, stable stream of nano crystals can be kept precisely overlapping with the small beam of the X-ray laser. In addition the reduction in overall flow-rate enhances the quality of the diffraction patterns and the rate at which crystals are actually hit by the X-ray flashes.

"Not only do we reduce crystal consumption, but our double flow-focusing nozzle also makes the use of the X-ray source more efficient by increasing the rate at which we collect high-quality diffraction patterns," says Bajt. "Moreover, using the sheath liquid allows us to investigate proteins in buffers that couldn't be injected before. Our concept widens the spectrum of biomolecules that can be analysed." Her team tested the new nozzle at the X-ray laser LCLS of the SLAC National Accelerator Laboratory in the US. The scientists teamed up with different groups to solve the structures of various proteins.

"Together with the group of Nobel laureate Roger Kornberg from Stanford University, we could solve the structure of the enzyme RNA polymerase II at room temperature for the first time," explains Oberthür. "Since crystallography at room temperature is a prerequisite to study structural dynamics in detail, this opens the door for future time-resolved studies or 'molecular movies' with this important system." The new device was also used to analyse two other enzymes, a membrane bound hydrogenase and a dioxygenase as well as naturally occurring protein nano crystals, from the protective cocoon of a specialised virus (Cydia pomonella granulovirus, CpGV).

The double flow-focusing nozzle also does away with another practical problem of this form of jet injection: Usually, at the edge of conventional nozzles, buffer material, protein and water ice crystals aggregate over time to form dripstone-like features. The same frequently happens at the bottom of the catch tank below the nozzle. If these protein-ice stalactites and stalagmites grow into the X-ray beam, they do not only render the diffraction pattern useless, their reflections can be so strong that they destroy the detector. So, every now and then, experiments need to be suspended to remove the protein-ice dripstones. "The sheath liquid in our nozzle prevents formation of such unwanted structures. The double flow-focusing nozzle enabled stable experimental conditions for many hours," explains Oberthür.

"In all experiments the nozzle worked extremely well," summarises Bajt. "We could reduce the number of interruptions from ten to zero in a shift, and we expect that experimental stations at other X-ray lasers and at synchrotron light sources like DESY's PETRA III can also benefit from the advantages of our device."

###

The Arizona State University, the Cornell University, the University of Minnesota, the Technical University of Berlin, the Charité Universitätsmedizin Berlin, the Hauptmann-Woodward Medical Research Institute, the University of Nova Gorica, the Institute of Metals and Technology in Ljubljana, the Helmholtz-Zentrum Geesthacht, the University of Hamburg, and the Hamburg Centre for Ultrafast Imaging CUI were also involved in this research. CFEL is a cooperation of DESY, the University of Hamburg and the German Max Planck Society.

####

About Deutsches Elektronen-Synchrotron DESY
Deutsches Elektronen-Synchrotron DESY is the leading German accelerator centre and one of the leading in the world. DESY is a member of the Helmholtz Association and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent). At its locations in Hamburg and Zeuthen near Berlin, DESY develops, builds and operates large particle accelerators, and uses them to investigate the structure of matter. DESY's combination of photon science and particle physics is unique in Europe.

For more information, please click here

Contacts:
Thomas Zoufal

49-408-998-1666

Copyright © Deutsches Elektronen-Synchrotron DESY

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Imaging

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Crystallography

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

How to trick electrons to see the hidden face of crystals: Researchers try a trick for complete 3D analysis of submicron crystals August 3rd, 2019

3-D-printed jars in ball-milling experiments June 29th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Possible Futures

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Tools

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Hitachi’s holography electron microscope attains unprecedented resolution:Image acquisition and defocusing correction techniques enable observations of atomic-scale magnetic fields at never-before-seen resolution July 5th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project