Home > Press > Graphene nanotubes provide a shortcut to add conductivity to powder coatings
![]() |
Abstract:
•Erie Powder Coatings has developed powder coatings with graphene nanotubes for EMI and RFI applications.
•The new products demonstrate both conductive and static dissipative properties in combination with aesthetic performance in a variety of surface textures and colors.
•The solution is being recognized for its excellent price-per-performance ratio, along with graphene nanotubes’ superior environmental compliance and the full range of properties they enable in coatings.
Many types of equipment may be adversely affected by radiated interference, known as electromagnetic interference (EMI) and radio frequency interference (RFI), therefore a conductive coating should be applied to protect sensitive electronic equipment. An antistatic additive is the key ingredient that enables conductivity in coatings. While most additives on the market are able to provide the required resistivity, there can be significant drawbacks.
A leading Canadian producer in its field, Erie Powder Coatings, has developed a variety of powder coatings using OCSiAl’s TUBALL graphene nanotubes. The new products demonstrate both conductive and static dissipative properties with resistance ranging from 103 Ω/sq to 109 Ω/sq. Initial laboratory tests showed positive results in combining the targeted conductivity with aesthetic performance in a variety of surface textures and colors. “Traditionally formulated high conductivity powder systems rely on conductive carbon black, which limits pigmentation options. By switching to a graphene nanotube system requiring lower dosage levels, a significantly wider range of color options are available,” said Tyler Siska, Erie Powder Coatings Research & Development Manager.
Graphene nanotube concentrates are introduced at the premixing stage. Standard powder coating production extrusion technology is used to incorporate the nanotubes with no special adaptation. Thanks to their unique morphology, nanotubes build a uniform conductive, reinforcing network inside material with no increase in melt viscosity. The unmatched ultra-low working dosage allows producers to expand the range of product colors and gives greater flexibility in the final formulation.
“Due to the ultra-low working dosages of graphene nanotubes that start from 0.01%, our clients globally recognize the excellent price-per-performance ratio of TUBALL nanotubes, along with nanotubes’ better environmental compliance and the full range of properties they enable in coatings,” said Sergey Zasukhin, OCSiAl Business Development Director for Canada, Mexico, Central and South Americas.
Compatible with most engineering plastics and metal substrates, sprayable electrically conductive powder coatings with graphene nanotubes are highly welcomed in electrostatic sensitive applications in ATEX hazardous environments, instrumentation, medical, marine, aviation, and defense industries.
####
About OCSiAl Group
Learn more on graphene nanotubes in powder coatings at tuball.com.
For more information, please click here
Contacts:
Anastasia Zirka
Senior PR & Advertising Manager
OCSiAl Group
+7 913 989 9239
Copyright © OCSiAl Group
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
A new kind of magnetism November 17th, 2023
Graphene/ Graphite
Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023
Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023
Researchers put a new twist on graphite July 21st, 2023
Wireless/telecommunications/RF/Antennas/Microwaves
Coatings
Graphene nanotubes offer an efficient replacement for carbon additives in conductive electrical heating paints November 3rd, 2021
Primers with graphene nanotubes offer a new solution for electrostatic painting of automotive parts July 16th, 2021
Expanding the freedom of design: powder coating on FRP thanks to conductive gelcoats with graphene nanotubes March 3rd, 2021
First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020
Possible Futures
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Announcements
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
A new kind of magnetism November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |