Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica

UCF NanoScience Technology Center Professor Debashis Chanda sits near an infrared camera image of himself in his lab. Chanda and his research group of UCF students developed a new long wave infrared detection technique. (Photo courtesy of Debashis Chanda)

Credit
Photo courtesy of Debashis Chanda
UCF NanoScience Technology Center Professor Debashis Chanda sits near an infrared camera image of himself in his lab. Chanda and his research group of UCF students developed a new long wave infrared detection technique. (Photo courtesy of Debashis Chanda) Credit Photo courtesy of Debashis Chanda

Abstract:
University of Central Florida (UCF) researcher Debashis Chanda, a professor at UCF’s NanoScience Technology Center, has developed a new technique to detect long wave infrared (LWIR) photons of different wavelengths or “colors.”

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica

Orlando, FL | Posted on December 13th, 2024

The research was recently published in Nano Letters, an esteemed scholarly journal published by the American Chemical Society.

The findings are the result of a $1.5 million project funded through the Extreme Photon Imaging Capabilities program of the Defense Advanced Research Projects Agency that was awarded nearly two years ago.

The new detection and imaging technique will have applications in analyzing materials by their spectral properties, or spectroscopic imaging, as well as thermal imaging applications.

Humans perceive primary and secondary colors but not infrared light. Scientists hypothesize that animals like snakes or nocturnal species can detect various wavelengths in the infrared almost like how humans perceive colors.

Infrared, specifically LWIR, detection at room temperature has been a long-standing challenge due to the weak photon energy, Chanda says.

LWIR detectors can be broadly classified into either cooled or uncooled detectors, the researcher says.

Cooled detectors excel in high detectivity and fast response times but their reliance on cryogenic cooling significantly escalates their cost and restricts their practical applications.

In contrast, uncooled detectors, like microbolometers, can function at room temperature and come at a relatively lower cost but exhibit lower sensitivity and slower response times, Chanda says.

Both kinds of LWIR detectors lack the dynamic spectral tunability, and so they can’t distinguish photon wavelengths of different “colors.”

Chanda and his team of postdoctoral scholars sought to expand beyond the limitations of existing LWIR detectors, so they worked to demonstrate a highly sensitive, efficient and dynamically tunable method based on a nanopatterned graphene.

Tianyi Guo ’23PhD is the lead author of the research. Guo completed his doctoral degree at UCF in 2023 under Chanda’s mentorship. He is the recipient of an international thesis award from Springer Nature and his thesis exploring potential LWIR detection methods was published in the high-impact Springer Theses book series.

This newly discovered method is the culmination of the research that Guo, Chanda and others in Chanda’s lab have performed, Chanda says.

“No present cooled or uncooled detectors offer such dynamic spectral tunability and ultrafast response,” Chanda says. “This demonstration underscores the potential of engineered monolayer graphene LWIR detectors operating at room temperature, offering high sensitivity as well as dynamic spectral tunability for spectroscopic imaging.”

The detector relies on a temperature difference in materials (known as the Seebeck effect) within an asymmetrically patterned graphene film. Upon light illumination and interaction, the patterned half generates hot carriers with greatly enhanced absorption while the unpatterned half remains cool. The diffusion of the hot carriers creates a photo-thermoelectric voltage and is measured between the source and drain electrodes.

By patterning the graphene into a specialized array, the researchers achieved an enhanced absorption and can further electrostatically tune within the LWIR spectra range and provide better infrared detection. The detector significantly surpasses the capabilities of the conventional uncooled infrared detectors — also known as microbolometers.

“The proposed detection platform paves the path for a new generation of uncooled graphene-based LWIR photodetectors for wide ranging applications such as consumer electronics, molecular sensing and space to name a few,” Chanda says.

Researchers from Chanda’s group include postdoctoral scholars Aritra Biswas ’21MS ’24PhD, Sayan Chandra, Arindam Dasgupta, and Muhammad Waqas Shabbir ’16MS ’21PhD.

Licensing Opportunity

The technology is patented. For more information about licensing this technology, please visit the Office of Technology Transfer.

Researchers’ Credentials:

Chanda has joint appointments in UCF’s NanoScience Technology Center, Department of Physics and CREOL, The College of Optics and Photonics. He received his doctorate in photonics from the University of Toronto and worked as a postdoctoral fellow at the University of Illinois at Urbana-Champaign. He joined UCF in Fall 2012.

Guo joined UCF’s physics doctoral program in the fall of 2017 and graduated in fall 2023. He received his bachelor’s of science in 2015 from the University of Science and Technology of China. Guo currently is a postdoctoral researcher in Chanda’s group at UCF.

####

For more information, please click here

Contacts:
Robert Wells
University of Central Florida

Office: 352-213-5481

Copyright © University of Central Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New nanoparticle could make cancer treatment safer, more effective: Scientists create a tiny particle for use with focused ultrasound on solid tumors May 16th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

New gel could boost coral reef restoration: The substance, applied to surfaces as a coating, improved coral larvae settlement by up to 20 times in experiments compared to untreated surfaces May 16th, 2025

Low-cost formulation reduces dose and increases efficacy of drug against worms: Praziquantel, usually administered in large tablets, is the only anthelmintic available on the market. New form of presentation uses nanotechnology and facilitates use by children and pets May 16th, 2025

2 Dimensional Materials

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Possible Futures

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

New gel could boost coral reef restoration: The substance, applied to surfaces as a coating, improved coral larvae settlement by up to 20 times in experiments compared to untreated surfaces May 16th, 2025

Low-cost formulation reduces dose and increases efficacy of drug against worms: Praziquantel, usually administered in large tablets, is the only anthelmintic available on the market. New form of presentation uses nanotechnology and facilitates use by children and pets May 16th, 2025

Optical computing/Photonic computing

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Sensors

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

New gel could boost coral reef restoration: The substance, applied to surfaces as a coating, improved coral larvae settlement by up to 20 times in experiments compared to untreated surfaces May 16th, 2025

Low-cost formulation reduces dose and increases efficacy of drug against worms: Praziquantel, usually administered in large tablets, is the only anthelmintic available on the market. New form of presentation uses nanotechnology and facilitates use by children and pets May 16th, 2025

Announcements

New nanoparticle could make cancer treatment safer, more effective: Scientists create a tiny particle for use with focused ultrasound on solid tumors May 16th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

New gel could boost coral reef restoration: The substance, applied to surfaces as a coating, improved coral larvae settlement by up to 20 times in experiments compared to untreated surfaces May 16th, 2025

Photonics/Optics/Lasers

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project