Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports

Abstract:
Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports. Superconductors are one of the most remarkable phenomena in physics, with amazing technological implications. Some of the technologies that would not be possible without superconductivity are extremely powerful magnets that levitate trains and MRI machines used to image the human body. The reason that superconductivity arises is now understood as a fundamentally quantum mechanical effect.

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports

Orange, CA | Posted on June 20th, 2016

The basic idea of quantum mechanics is that at the microscopic scale everything, including matter and light, has a wave property to it. Normally the wave nature is not noticeable as the waves are very small, and all the waves are out of synchronization with each other, so that their effects are not important. For this reason, to observe quantum mechanical behavior experiments generally have to be performed at a very low temperature, and at microscopic length scales.

Superconductors, on the other hand, have a dramatic effect in the disappearance of resistance, changing the entire property of the material. The key quantum effect that occurs is that the quantum waves become highly synchronized and occur at a macroscopic level. This is now understood to be the same basic effect as that seen in lasers. The similarity is that in a laser, all the photons making up the light are synchronized, and appear as one single coherent wave. In a superconductor the macroscopic wave is for the quantum waves of the electrons, instead of the photons, but the basic quantum feature is the same. Such macroscopic quantum waves have also been observed in Bose-Einstein condensates, where atoms cooled to nanokelvin temperatures all collapse into a single state.

Up until now, these related but distinct phenomena have only been observed separately. However, as superconductors, lasers, and Bose-Einstein condensates all share a common feature, it has been expected that it should be able to see these features at the same time. A recent experiment in a global collaborative effort with teams from Japan, the United States, and Germany have observed for the first time experimental indication that this expectation is true.

They tackled this problem by highly exciting exciton-polaritons, which are particle-like excitations in a semiconductor systems and formed by strong coupling between electron-hole pairs and photons. They observed high-energy side-peak emission that cannot be explained by two mechanisms known to date: Bose-Einstein condensation of exciton-polaritons, nor conventional semiconductor lasing driven by the optical gain from unbound electron hole plasma.

By combining the experimental data with their latest theory, they found a possibility that the peak originates from a strongly bound e-h pairs, which can persist in the presence of the high-quality optical cavity even for the lasing state. This scenario has been thought to be impossible since an e-h pair experiencing weakened binding force due to other electrons and/or holes breaks up in high-density. The proposed scenario is closely related to the BCS physics, which was originally introduced by John Bardeen, Leon Cooper, and John Robert Schrieffer to explain the origin of superconductivity. In the BCS theory, the superconductivity is an effect caused by a condensation of weakly bound electron pairs (Cooper pairs). In the latest theory of e-h pairs plus photons (e-h-p), bound e-h pairs' survival can be described in BCS theory of e-h-p system as an analogy of Cooper pairs in superconductivity.

"Although a full understanding of this observation has not yet been reached," said Dr. Tomoyuki Horikiri at Yokohama National University, and one of the authors on the study. "The discovery provides an important step toward the clarification of the relationship between the BCS physics and the semiconductor lasers. The observation not only deepens the understanding of the highly-excited exciton-polariton systems, but also opens up a new avenue for exploring the non-equilibrium and dissipative many-body physics. In such practical application studies, there are still many quantum foundational questions."

###

The paper was published in Scientific Reports by Nature Publishing Group. In addition to Tomoyuki Horikiri, it was co-authored by Dr. Makoto Yamaguchi and Dr. Kenji Kamide and an international collaboration team including Tim Byrnes at New York University; Yutaka Shikano at Institute for Molecular Science, National Institutes of Natural Sciences and Institute for Quantum Studies, Chapman University; Tetsuya Ogawa at Osaka University; Alfred Forchel at Universität Würzburg, and YoshihisaYamamoto at Stanford University and National Institute of Informatics.

####

About Chapman University
Consistently ranked among the top universities in the West, Chapman University attracts highly qualified students from around the globe. Its programs are designed to encourage leadership in innovation, creativity and collaboration, and are increasingly recognized for providing an extraordinary educational experience. The university excels in the sciences and humanities, business and economics, educational studies, film and media arts, performing arts, and law. Student enrollment in graduate and undergraduate programs is approaching 8,000 and Chapman University alumni are found throughout the world. Visit us at www.chapman.edu.

Follow us on Facebook at: Chapman University Facebook
On Twitter and Instagram at: @ChapmanU

For more information, please click here

Contacts:
Sheri Ledbetter

714-289-3143

Copyright © Chapman University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To see the full article, click here:

More about Chapman's Insititute for Quantum Studies can be found here:

Related News Press

Quantum Physics

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

What a “2D” quantum superfluid feels like to the touch November 3rd, 2023

Magnetism/Magnons

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

News and information

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Imaging

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Superconductivity

Research breakthrough could be significant for quantum computing future: Irish-based scientists confirm crucial characteristic of new superconductor material June 30th, 2023

Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023

Blog sites

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Peter Diamandis Thinks Nanotech Will Interface With Human Minds September 1st, 2016

Graphene-Enabled Paper Makes for Flexible Display August 1st, 2016

Govt.-Legislation/Regulation/Funding/Policy

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Possible Futures

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Discoveries

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

Announcements

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

Tools

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Military

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Nanoparticle quasicrystal constructed with DNA: The breakthrough opens the way for designing and building more complex structures November 3rd, 2023

Quantum powers researchers to see the unseen September 8th, 2023

Automotive/Transportation

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Photonics/Optics/Lasers

Night-time radiative warming using the atmosphere November 17th, 2023

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project