Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Sigma-Aldrich To Host Molecular Self-Assembly Webcast

Abstract:
November 17 Webcast Features MSA Scientific Leaders Professor Paul Weiss and Professor Milan Mrksich

Sigma-Aldrich To Host Molecular Self-Assembly Webcast

Posted on November 11th, 2009

Sigma-Aldrich (NASDAQ: SIAL) announced it will host a technical webcast that examines Molecular Self-Assembly (MSA) technology for nanoscale patterning and for biochip arrays useful in high throughput medical diagnosis. This live event, titled, 'From Molecules to Monolayers: Self-Assembly and Analysis, Molecule by Molecule,' will feature technology-leading experts Professor Paul Weiss, Director of the California NanoSystems Institute, UCLA and Professor Milan Mrksich, Department of Chemistry, University of Chicago, Ill., and Investigator at Howard Hughes Medical Institute.

The webcast will be held at 9 a.m. Pacific Time, Tuesday, November 17, 2009, and will be simultaneously broadcast from the campuses of UCLA and Northwestern University. Technical details and registration are provided at sigma-aldrich.com/mswebcast.

MSA is the assembly of molecules without guidance or management from an outside source. The final desired structure is encoded in the shape and properties of the molecules used and in the order, in which they are introduced, as compared to traditional techniques, such as lithography, where the desired final structure is carved out from a larger block of matter. In nature, self-assembly occurs spontaneously, an example being the self-assembly of the cellular lipid bilayer membrane.

"By expanding our thinking in terms of molecular components, we have been able to develop new design rules for self-assembled structures and new ways of using them," said Professor Paul Weiss. "As a result, it is an exciting time to be working with these technologies."

Innovative molecules with designed interactions could be used for advanced patterning applications in hybrid lithographies with functionality to enable chemical patterning, biofunctionalization and precise three-dimensional nanostructures. For example, biochips are arrays of self-assembled materials, which allow multiple medical tests to be performed simultaneously. Simple MSAs are easily assessed and validated with current experimental techniques making them ideal to analyze sophisticated biomolecular assemblies. MSA may also prove to be a cost-effective way to create functional nanodevices such as nanowires, nanotransistors and nanosensors in large numbers.

"The magical combination of mass spectrometry with self-assembled monolayers enables label-free assays with biochips, which can be used to profile a broad range of biochemical activities," said Professor Milan Mrksich.

"Bringing materials science leaders and innovative technologies to the research community is important to Sigma-Aldrich," said Dr. Kaushik Patel, Sigma-Aldrich Materials Science Product Manager. "As the dimensions of designed surfaces become smaller, the challenge of fabricating and measuring these intricate surfaces increases and new intelligent materials and analysis tools are continually required." New families of molecules are being developed for self-assembly, continually broadening the application of these methods.

To learn more about MSA technology and its applications visit sigma-aldrich.com/selfassembly.

Cautionary Statement: This release contains forward-looking statements relating to future strategic actions and initiatives and similar intentions and beliefs and other statements regarding the Company's expectations, beliefs, intentions and the like, which involve assumptions regarding the Company's operations and conditions in the markets the Company serves. The Company does not undertake any obligation to update these forward-looking statements.

Sigma-Aldrich is a registered trademark of Sigma-Aldrich Biotechnology LP and Sigma-Aldrich Co.

####

About Sigma-Aldrich
About Sigma-Aldrich: Sigma-Aldrich is a leading Life Science and High Technology company. Its biochemical and organic chemical products and kits are used in scientific research, including genomic and proteomic research, biotechnology, pharmaceutical development and as key components in pharmaceutical, diagnostic and other high technology manufacturing.

Sigma-Aldrich has customers in life science companies, university and government institutions, hospitals, and in industry. Over one million scientists and technologists use its products. Sigma-Aldrich operates in 38 countries and has 7,800 employees providing excellent service worldwide. Sigma-Aldrich is committed to Accelerating Customer Success through Innovation and Leadership in Life Science, High Technology and Service.

For more information, please click here

Contacts:
Sean Battles
Sigma-Aldrich
314-286-7616

Copyright © Sigma-Aldrich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Possible Futures

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Chip Technology

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanomedicine

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Events/Classes

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project