Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Reduced power consumption in semiconductor devices

Schematic of the effect of the “stepping-stone” current flow formed via the platinum nanoparticles inserted in the thin phase-transition oxide film
CREDIT
POSTECH
Schematic of the effect of the “stepping-stone” current flow formed via the platinum nanoparticles inserted in the thin phase-transition oxide film CREDIT POSTECH

Abstract:
Stepping stones are placed to help travelers to cross streams. As long as there are stepping stones that connect the both sides of the water, one can easily get across with just a few steps. Using the same principal, a research team at POSTECH has developed technology that cuts the power consumption in semiconductor devices in half by placing stepping stones.

Reduced power consumption in semiconductor devices

Pohang, Korea | Posted on September 23rd, 2022

A research team led by Professor Junwoo Son and Dr. Minguk Cho (Department of Materials Science and Engineering) at POSTECH has succeeded in maximizing the switching efficiency of oxide semiconductor devices by inserting platinum nanoparticles. The findings from the study were recently published in the international journal Nature Communications.



The oxide material with the metal-insulator phase transition, in which the phase of a material rapidly changes from an insulator to a metal when the threshold voltage is reached, is spotlighted as a key material for fabricating low-power semiconductor devices.



The metal–insulator phase transition occurs when insulator domains, several nanometer (nm, billionth of a meter) units big, are transformed into metal domains. The key was to reduce the magnitude of the voltage applied to the device to increase the switching efficiency of a semiconductor device.



The research team succeeded in increasing the switching efficiency of the device by using platinum nanoparticles. When voltage was applied to a device, an electric current “skipped” through these particles and a rapid phase transition occurred.



The memory effect of the device also increased by more than a million times. In general, after the voltage is cut off, it immediately changes to the insulator phase where no current flows; this duration was extremely short at 1 millionth of a second. However, it was confirmed that the memory effect of remembering the previous firing of the devices can be increased to several seconds, and the device could be operated again with relatively low voltage owing to the residual metallic domains remaining near the platinum nanoparticles.



This technology is anticipated to be essential for the development of next-generation electronic devices, such as intelligent semiconductors or neuromorphic semiconductor devices that can process vast amounts of data with less power.



This study was conducted with the support from the Basic Science Research Program, Mid-career Researcher Program, and the Next-generation Intelligence Semiconductor Program of the National Research Foundation of Korea.

####

For more information, please click here

Contacts:
Jinyoung Huh
Pohang University of Science & Technology (POSTECH)

Office: 82-54-279-2415

Copyright © Pohang University of Science & Technology (POSTECH)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

New method in the fight against forever chemicals September 13th, 2024

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Chip Technology

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Controlled synthesis of crystal flakes paves path for advanced future electronics June 17th, 2022

Discoveries

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Announcements

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

New method in the fight against forever chemicals September 13th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project