Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

Macroscopic paper-cuts in a paper sheet and nano-kirigami in an 80-nm thick gold film.

CREDIT
Institute of Physics
Macroscopic paper-cuts in a paper sheet and nano-kirigami in an 80-nm thick gold film. CREDIT Institute of Physics

Abstract:
Kirigami (also called "paper-cuts" or "jianzhi") is one of the most traditional Chinese folk arts. It is widely used in window decorations, gift cards, festivals, and ceremonies, etc. Kirigami involves cutting and folding flat objects into 3D shapes. Recently, the techniques of this ancient art have been used in various scientific and technological fields, including designs for solar arrays, biomedical devices and micro-/nano- electromechanical systems (MEMS/NEMS).

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

Beijing, China | Posted on July 13th, 2018

Dr. LI Jiafang, from the Institute of Physics (IOP), Chinese Academy of Sciences, has recently formed an international team to apply kirigami techniques to advanced 3D nanofabrication.

Inspired by a traditional Chinese kirigami design called "pulling flower," the team developed a direct nano-kirigami method to work with flat films at the nanoscale. They utilized a focused ion beam (FIB) instead of knives/scissors to cut a precise pattern in a free-standing gold nanofilm, then used the same FIB, instead of hands, to gradually "pull" the nanopattern into a complex 3D shape.

The "pulling" forces were induced by heterogeneous vacancies (introducing tensile stress) and the implanted ions (introducing compressive stress) within the gold nanofilm during FIB irradiation.

By utilizing the topography-guided stress equilibrium within the nanofilm, versatile 3D shape transformations such as upward buckling, downward bending, complex rotation and twisting of nanostructures were precisely achieved.

While previous attempts to create functional kirigami devices have used complicated sequential procedures and have been primarily aimed at realizing mechanical rather than optical functions, this new nano-kirigami method, in contrast, can be implemented in a single fabrication step and could be used to perform a number of optical functions.

For a proof-of-concept demonstration, the team produced a 3D pinwheel-like structure with giant optical chirality. The nanodevice achieved efficient manipulation of "left-handed" and "right-handed" circularly polarized light and exhibited strong uniaxial optical rotation effects in telecommunication wavelengths.

In this way, the team demonstrated a multidisciplinary connection between the two fields of nanomechanics and nanophotonics. This may represent a brand new direction for emerging kirigami research.

The team also developed a theoretical model to elucidate the dynamics during the nano-kirigami fabrication. This is of great significance since it allows researchers to design 3D nanogeometries based on desired optical functionalities. In contrast, previous studies relied heavily on intuitive designs.

In other words, in terms of geometric design, nano-kirigami offers an intelligent 3D nanofabrication method beyond traditional bottom-up, top-down and self-assembly nanofabrication techniques.

Its concept can be extended to broad nanofabrication platforms and could lead to the realization of complex optical nanostructures for sensing, computation, micro-/nano- electromechanical systems or biomedical devices.

This work, entitled "Nano-kirigami with giant optical chirality," was published in Science Advances on July 6, 2018.

###

The study was supported by the National Science Foundation of China, the Ministry of Science and Technology of China, the Chinese Academy of Sciences, the Chinese Scholarship Council and grants from the U.S government.

####

For more information, please click here

Contacts:
LI Jiafang

Copyright © Chinese Academy of Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Nanofabrication

Shrinking hydrogels enlarge nanofabrication options: Researchers from Pittsburgh and Hong Kong print intricate, 2D and 3D patterns December 29th, 2022

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

Semi-nonlinear etchless lithium niobate waveguide with bound states in the continuum November 4th, 2022

Purdue researchers suggest novel way to generate a light source made from entangled photons: This research shows promise in establishing the measurement of entangled photons down to the attosecond, and possibly even zeptosecond September 9th, 2022

NEMS

IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

One string to rule them all April 17th, 2018

Leti Scientists Participating in Sessions on Med Tech, Automotive Technologies, MEMS, Si-photonics and Lithography at SEMICON Europa: Teams also Will Demonstrate Technology Advances in Telecom, Data Fusion, Energy, Silicon Photonics and 3D Integration October 18th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Quantum powers researchers to see the unseen September 8th, 2023

Chloride ions from seawater eyed as possible lithium replacement in batteries of the future August 11th, 2023

Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023

Possible Futures

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

MEMS

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

CEA-Leti Develops Tiny Photoacoustic-Spectroscopy System For Detecting Chemicals & Gases: Paper at Photonics West to Present Detector that Could Cost 10x Less Than Existing Systems and Prompt Widespread Use of the Technology February 4th, 2020

MEMS & Sensors Executive Congress Technology Showcase Finalists Highlight Innovations in Automotive, Biomedical and Consumer Electronics: MSIG MEMS & Sensors Executive Congress – October 22-24, 2019, Coronado, Calif. October 1st, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Nanomedicine

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023

Discoveries

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Announcements

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

The present and future of computing get a boost from new research July 21st, 2023

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Research partnerships

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Destroying the superconductivity in a kagome metal: Electronic control of quantum transitions in candidate material for future low-energy electronics March 3rd, 2023

Polymer p-doping improves perovskite solar cell stability January 20th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project