Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Engineers develop new magnetic ink to print self-healing devices that heal in record time

Nanoengineers printed a self-healing circuit on the sleeve of a T-shirt and connected it with an LED light and a coin battery. The researchers then cut the circuit and the fabric it was printed on. At that point, the LED turned off. But then within a few seconds it started turning back on as the two sides of the circuit came together again and healed themselves, restoring conductivity.
CREDIT
Jacobs School of Engineering/UC San Diego
Nanoengineers printed a self-healing circuit on the sleeve of a T-shirt and connected it with an LED light and a coin battery. The researchers then cut the circuit and the fabric it was printed on. At that point, the LED turned off. But then within a few seconds it started turning back on as the two sides of the circuit came together again and healed themselves, restoring conductivity. CREDIT Jacobs School of Engineering/UC San Diego

Abstract:
A team of engineers at the University of California San Diego has developed a magnetic ink that can be used to make self-healing batteries, electrochemical sensors and wearable, textile-based electrical circuits.

Engineers develop new magnetic ink to print self-healing devices that heal in record time

San Diego, CA | Posted on November 7th, 2016

The key ingredient for the ink is microparticles oriented in a certain configuration by a magnetic field. Because of the way they're oriented, particles on both sides of a tear are magnetically attracted to one another, causing a device printed with the ink to heal itself. The devices repair tears as wide as 3 millimeters--a record in the field of self-healing systems.

Researchers detail their findings in the Nov. 2 issue of Science Advances.

"Our work holds considerable promise for widespread practical applications for long-lasting printed electronic devices," said Joseph Wang, director of the Center for Wearable Sensors and chair of the nanoengineering department at UC San Diego.

Existing self-healing materials require an external trigger to kick start the healing process. They also take anywhere between a few minutes to several days to work. By contrast, the system developed by Wang and colleagues doesn't require any outside catalyst to work. Damage is repaired within about 50 milliseconds (0.05 seconds).

Engineers used the ink to print batteries, electrochemical sensors and wearable, textile-based electrical circuits (see video). They then set about damaging these devices by cutting them and pulling them apart to create increasingly wide gaps. Researchers repeatedly damaged the devices nine times at the same location. They also inflicted damage in four different places on the same device. The devices still healed themselves and recovered their function while losing a minimum amount of conductivity.

For example, nanoengineers printed a self-healing circuit on the sleeve of a T-shirt and connected it with an LED light and a coin battery. The researchers then cut the circuit and the fabric it was printed on. At that point, the LED turned off. But then within a few seconds it started turning back on as the two sides of the circuit came together again and healed themselves, restoring conductivity.

"We wanted to develop a smart system with impressive self-healing abilities with easy-to-find, inexpensive materials," said Amay Bandodkar, one of the papers' first authors, who earned his Ph.D. in Wang's lab and is now a postdoctoral researcher at Northwestern University.

Fabrication

Wang's research group is a leader in the field of printed wearable sensors, so his team of nanoengineers naturally turned to ink as a starting point for their self-healing system.

Engineers loaded the ink with microparticles made of a type of magnet commonly used in research and made of neodymium, a soft, silvery metal. The particles' magnetic field is much larger than their individual size. This is the key to the ink's self-healing properties because the attraction between the particles leads to closing tears that are millimeters wide.

The particles also conduct electricity and are inexpensive. But they have poor electrochemical properties, making them difficult to use in the electrochemical devices, such as sensors, on their own. To remedy this problem, researchers added carbon black to the ink, a material commonly used to make batteries and sensors.

But researchers realized that the microparticles' magnetic fields, when in their natural configuration, canceled each other out, which robbed them of their healing properties. Engineers solved this by printing the ink in the presence of an external magnetic field, which ensured that the particles oriented themselves to behave as a permanent magnet with two opposite poles at the end of each printed device. When the device is cut in two, the two damaged pieces act as different magnets that attract each other and self-heal.

In the future, engineers envision making different inks with different ingredients for a wide range of applications. In addition, they plan to develop computer simulations to test different self-healing ink recipes in silico before trying them out in the lab.

###

"All-printed magnetically self-healing electrochemical devices" by Amay J. Bandodkar, Christian S. Lopez, Allibai Mohanan, Vinu Mohan, Lu Yin, Rajan Kumar, Joseph Wang. Bandodkar is now a postdoctoral fellow at Northwestern University. All other authors are affiliated with the Department of Nanoengineering at the Jacobs School of Engineering at UC San Diego. This work was supported by the NIH (award R21EB019698) and Advanced Research Projects Agency-Energy (award DE-AR0000535).

####

For more information, please click here

Contacts:
IOANA PATRINGENARU

858-822-0899

Copyright © University of California, San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Video available at:

Related News Press

News and information

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Detecting breast cancer through a spit test February 16th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Flexible Electronics

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

CityU awarded invention: Soft, ultrathin photonic material cools down wearable electronic devices June 30th, 2023

Liquid metal sticks to surfaces without a binding agent June 9th, 2023

Tin selenide nanosheets enables to develop wearable tracking devices December 9th, 2022

Wearable electronics

CityU awarded invention: Soft, ultrathin photonic material cools down wearable electronic devices June 30th, 2023

Liquid metal sticks to surfaces without a binding agent June 9th, 2023

Tin selenide nanosheets enables to develop wearable tracking devices December 9th, 2022

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Sensors

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Superbug killer: New synthetic molecule highly effective against drug-resistant bacteria February 16th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Announcements

Detecting breast cancer through a spit test February 16th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Detecting breast cancer through a spit test February 16th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Textiles/Clothing

This new fabric coating could drastically reduce microplastic pollution from washing clothes: University of Toronto Engineering researchers are working on a fabric finish to prevent microplastic fibres from shedding during laundry cycles January 27th, 2023

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project