Home > Press > Simple ballpoint pen can write custom LEDs
Junyi Zhao in the McKelvey School of Engineering demonstrates using a simple ballpoint pen to write custom LEDs on paper (left). The same pens can be used to draw multicolored designs on aluminum foil (top right) and to create light up sketches (bottom right). CREDIT Courtesy of Wang lab, Washington University in St. Louis |
Abstract:
Researchers working with Chuan Wang, an associate professor of electrical and systems engineering at the McKelvey School of Engineering at Washington University in St. Louis, have developed ink pens that allow individuals to handwrite flexible, stretchable optoelectronic devices on everyday materials including paper, textiles, rubber, plastics and 3D objects.
In a paper published Aug. 7 in Nature Photonics, the team reports their simple and versatile fabrication approach to allow anyone to make a custom light-emitting diode (LED) or photodetector without the need for any specialized training or bulky equipment. The new handheld fabrication technology builds on earlier work by Wang and first author Junyi Zhao, a doctoral candidate in Wang’s lab, in which they demonstrated a novel way to fabricate stretchable LEDs with an inkjet printer.
“Handwriting custom devices was a clear next step after the printer,” Wang said. “We had the inks already, so it was a natural transition to take the technology we had already developed and modify it to work in regular ballpoint pens where it could be cheap and accessible to all.”
Read more on the McKelvey School of Engineering website.
####
For more information, please click here
Contacts:
Talia Ogliore
Washington University in St. Louis
Office: 314-935-2919
Copyright © Washington University in St. Louis
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Quantum pumping in molecular junctions August 16th, 2024
Display technology/LEDs/SS Lighting/OLEDs
Possible Futures
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Quantum pumping in molecular junctions August 16th, 2024
Discoveries
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Quantum pumping in molecular junctions August 16th, 2024
Announcements
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||