Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics

Hybrids of two-dimensional materials like the graphene-molybdenum disulfide illustrated here have electronic properties that don't follow the same rules as their 3-D cousins, according to Rice University researchers. The limited direct contact between the two materials creates an electric field that greatly increases the size of the p/n junction.Credit: Henry Yu/Rice University
Hybrids of two-dimensional materials like the graphene-molybdenum disulfide illustrated here have electronic properties that don't follow the same rules as their 3-D cousins, according to Rice University researchers. The limited direct contact between the two materials creates an electric field that greatly increases the size of the p/n junction.

Credit: Henry Yu/Rice University

Abstract:
The old rules don't necessarily apply when building electronic components out of two-dimensional materials, according to scientists at Rice University.

The Rice lab of theoretical physicist Boris Yakobson analyzed hybrids that put 2-D materials like graphene and boron nitride side by side to see what happens at the border. They found that the electronic characteristics of such "co-planar" hybrids differ from bulkier components.

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics

Houston, TX | Posted on July 25th, 2016

Their results appear this month in the American Chemical Society journal Nano Letters.

Shrinking electronics means shrinking their components. Academic labs and industries are studying how materials like graphene may enable the ultimate in thin devices by building all the necessary circuits into an atom-thick layer.

"Our work is important because semiconductor junctions are a big field," Yakobson said. "There are books with iconic models of electronic behavior that are extremely well-developed and have become the established pillars of industry.

"But these are all for bulk-to-bulk interfaces between three-dimensional metals," he said. "Now that people are actively working to make two-dimensional devices, especially with co-planar electronics, we realized that the rules have to be reconsidered. Many of the established models utilized in industry just don't apply."

The researchers led by Rice graduate student Henry Yu built computer simulations that analyze charge transfer between atom-thick materials.

"It was a logical step to test our theory on both metals and semiconductors, which have very different electronic properties," Yu said. "This makes graphene, which is a metal -- or a semimetal, to be precise -- molybdenum disulfide and boron nitride, which are semiconductors, or even their hybrids ideal systems to study.

"In fact, these materials have been widely fabricated and used in the community for almost a decade, which makes analysis of them more appreciable in the field. Furthermore, both hybrids of graphene-molybdenum disulfide and graphene-boron nitride have been successfully synthesized recently, which means our study has practical meaning and can be tested in the lab now," he said.

Yakobson said 3-D materials have a narrow region for charge transfer at the positive and negative (or p/n) junction. But the researchers found that 2-D interfaces created "a highly nonlocalized charge transfer" -- and an electric field along with it -- that greatly increased the junction size. That could give them an advantage in photovoltaic applications like solar cells, the researchers said.

The lab built a simulation of a hybrid of graphene and molybdenum disulfide and also considered graphene-boron nitride and graphene in which half was doped to create a p/n junction. Their calculations predicted the presence of an electric field should make 2-D Schottky (one-way) devices like transistors and diodes more tunable based on the size of the device itself.

How the atoms line up with each other is also important, Yakobson said. Graphene and boron nitride both feature hexagonal lattices, so they mesh perfectly. But molybdenum disulfide, another promising material, isn't exactly flat, though it's still considered 2-D.

"If the atomic structures don't match, you get dangling bonds or defects along the borderline," he said. "The structure has consequences for electronic behavior, especially for what is called Fermi level pinning."

Pinning can degrade electrical performance by creating an energy barrier at the interface, Yakobson explained. "But your Schottky barrier (in which current moves in only one direction) doesn't change as expected. This is a well-known phenomenon for semiconductors; it's just that in two dimensions, it's different, and in this case may favor 2-D over 3-D systems."

Yakobson said the principles put forth by the new paper will apply to patterned hybrids of two or more 2-D patches. "You can make something special, but the basic effects are always at the interfaces. If you want to have many transistors in the same plane, it's fine, but you still have to consider effects at the junctions.

"There's no reason we can't build 2-D rectifiers, transistors or memory elements," he said. "They'll be the same as we use routinely in devices now. But unless we develop a proper fundamental knowledge of the physics, they may fail to do what we design or plan."

Rice postdoctoral research associate Alex Kutana is a co-author of the paper. Yakobson is the Karl F. Hasselmann Professor of Materials Science and NanoEngineering and a professor of chemistry.

The Office of Naval Research supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to tinyurl.com/RiceUniversityoverview.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Yakobson Research Group:

George R. Brown School of Engineering:

Related News Press

News and information

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

2 Dimensional Materials

Nanoparticle quasicrystal constructed with DNA: The breakthrough opens the way for designing and building more complex structures November 3rd, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

What a “2D” quantum superfluid feels like to the touch November 3rd, 2023

Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023

Physics

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

What a “2D” quantum superfluid feels like to the touch November 3rd, 2023

Unveiling the quantum dance: Experiments reveal nexus of vibrational and electronic dynamics: Coupling of electronic and nuclear dynamics revealed in molecules with ultrafast lasers and X-rays July 21st, 2023

Hardware

The present and future of computing get a boost from new research July 21st, 2023

A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Possible Futures

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Chip Technology

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023

Successful morphing of inorganic perovskites without damaging their functional properties October 6th, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

Materials/Metamaterials/Magnetoresistance

Porous platinum matrix shows promise as a new actuator material November 17th, 2023

A new kind of magnetism November 17th, 2023

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

Announcements

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

Military

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Nanoparticle quasicrystal constructed with DNA: The breakthrough opens the way for designing and building more complex structures November 3rd, 2023

Quantum powers researchers to see the unseen September 8th, 2023

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Study on Magnetic Force Microscopy wins 2023 Advances in Magnetism Award: Analysis of finite size effects reveals significant consequences for density measurements November 3rd, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project