Home > Press > University of Illinois researchers demonstrate tunable wetting and adhesion of graphene
![]() |
Doping-induced tunable wetting of graphene. CREDIT: University of Illinois |
Abstract:
Researchers from the University of Illinois at Urbana-Champaign have demonstrated doping-induced tunable wetting and adhesion of graphene, revealing new and unique opportunities for advanced coating materials and transducers.
"Our study suggests that the doping-induced modulation of the charge carrier density in graphene influences its wettability and adhesion," explained SungWoo Nam, an assistant professor in the Department of Mechanical Science and Engineering at Illinois. "This work investigates this new doping-induced tunable wetting phenomena which is unique to graphene and potentially other 2D materials in complementary theoretical and experimental investigations."
Graphene, being optically transparent and possessing superior electrical and mechanical properties, can revolutionize the fields of surface coatings and electrowetting displays, according to the researchers. A material's wettability (i.e. interaction with water) is typically constant in the absence of external influence and are classified as either water-loving (hydrophilic) or water-repelling (hydrophobic; water beads up on the surface). Depending on the specific application, a choice between either hydrophobic or hydrophilic material is required. For electrowetting displays, for example, the hydrophilic characteristics of display material is enhanced with the help of a constant externally impressed electric current.
"What makes graphene special is that, unlike conventional bulk materials, it displays tunable surface wetting characteristics due to a change in its electron density, or by doping," said Ali Ashraf, a graduate student researcher and first author of the paper, "Doping-Induced Tunable Wettability and Adhesion of Graphene," appearing in Nano Letters. "Our collaborative research teams have discovered that while graphene behaves typically as a hydrophobic material (due to presence of strongly held air-borne contamination on its surface), its hydrophobicity can be readily changed by changing electron density.
"Our study shows that graphene demonstrates tunable wettability -- switchable hydrophobic and hydrophilic behavior -- when its electron density is changed by subsurface charged polymers and metals (a.k.a. doping)," Ashraf added. "This finding sheds lights on previous unclear links between quantum-level charge transfer and macroscopic surface wettability for graphene. This exciting finding opens new doors of possibility for tunable surface coating and electrowetting displays without continuous external electric current supply, which will translate into significant energy savings."
"In addition, we investigated another closely related property -- surface adhesion," Nam said. "We observed changes in electron density of graphene leads to a change in adhesion, which determines how graphene interacts with other hydrophobic and hydrophilic molecules, which is important for graphene-based chemical and biosensors. Our finding suggests that it is possible to make reusable, self-cleaning graphene sensors that can first interact with hydrophobic molecules for detection, and then separates from them (i.e. cleans itself) by enhanced hydrophilicity via electron density modulation."
###
In addition to Nam and Ashraf, co-authors include Yanbin Wu, Michael Cai Wang, Keong Yong, Tao Sun, Yuhang Jing, Richard T. Haasch, and Narayana Aluru, a professor of mechanical science and engineering, whose research group carried out theoretical modeling of this new experimental observation in this study.
The authors note that our work independently demonstrates and further supports similar findings reported in Hong et al. (DOI: 10.1021/acs.nanolett.6b01594), showing doping-induced wettability modulation of graphene.
####
For more information, please click here
Contacts:
SungWoo Nam
217-300-0267
Copyright © University of Illinois College of Engineering
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
A new kind of magnetism November 17th, 2023
Graphene/ Graphite
Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023
Researchers put a new twist on graphite July 21st, 2023
2 Dimensional Materials
Nanoparticle quasicrystal constructed with DNA: The breakthrough opens the way for designing and building more complex structures November 3rd, 2023
What a “2D” quantum superfluid feels like to the touch November 3rd, 2023
Hardware
The present and future of computing get a boost from new research July 21st, 2023
A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020
Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020
Possible Futures
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
Chip Technology
Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023
Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023
Successful morphing of inorganic perovskites without damaging their functional properties October 6th, 2023
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
A new kind of magnetism November 17th, 2023
Announcements
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
A new kind of magnetism November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |