Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Spin lifetime anisotropy of graphene is much weaker than previously reported

Abstract:
An article published today in Nature Communications presents a new method to determine the spin lifetime anisotropy of spin-polarized carriers in graphene using oblique spin precession. The work, led by ICREA research Prof Sergio O Valenzuela, Group Leader of the ICN2 Physics and Engineering Of Nanodevices Group, demonstrates spin-lifetime anisotropy measurements in graphene and discusses them in light of current theoretical knowledge.

Spin lifetime anisotropy of graphene is much weaker than previously reported

Barcelona, Spain | Posted on May 10th, 2016

One of the most fascinating puzzles for the graphene and spintronics communities is identifying the main microscopic process for spin relaxation in graphene. Conventional relaxation mechanisms have yielded contradictory results when applied to single-layer graphene. In an article published today in Nature Communications, researchers from the Institut Català de Nanociència i Nanotecnologia (ICN2) determine the spin lifetime anisotropy of spin-polarized carriers in graphene, which is expected to generate valuable information to overcome the above puzzle.

The present work demonstrates spin-lifetime anisotropy measurements in graphene and discusses them in light of current theoretical knowledge. It has been coordinated by the ICREA Research Prof Sergio O. Valenzuela, Group Leader of the ICN2 Physics and Engineering Of Nanodevices Group, in collaboration with the INPAC - Institute for Nanoscale Physics and Chemistry (Leuven, Belgium). The first author of the article is Bart Raes, from ICN2.

The anisotropy is determined using a novel method based on oblique spin precession, a change in the orientation of the rotational axis of a rotating body. In contrast to prior approaches, the method does not require large out-of-plane magnetic fields and thus it is reliable for both low and high carrier densities. The authors first determine the in-plane spin lifetime by conventional spin precession measurements with magnetic fields perpendicular to the graphene plane. Then, in order to evaluate the out-of-plane spin lifetime, they implement spin precession measurements under oblique magnetic fields that generate an out-of-plane spin population.

The results show that the spin lifetime anisotropy of graphene on silicon oxide is independent of carrier density and temperature down to 150 K, and much weaker than previously reported. Indeed, within the experimental uncertainty, the spin relaxation is isotropic. Together with the gate dependence of the spin lifetime, this indicates that the spin relaxation is driven by magnetic impurities or random spin-orbit or gauge fields.

The authors underline that the microscopic properties of the graphene used in devices originating from different laboratories are not necessarily equivalent, owing to the graphite source or the processing steps that have been used. Thus, experimental results might vary among research groups. This underscores the importance of developing advanced spin transport characterization techniques and the systematic implementation using samples of different origin.

The authors conclude that spin relaxation anisotropy measurements on specific substrates and with a controlled number of deposited adatoms will be crucial to increase the spin lifetime towards the theoretical limit and to find ways of controlling the spin lifetime. That is the path to ultimately develop unprecedented approaches for the emergence of spin-based information processing protocols relying on graphene.

####

For more information, please click here

Contacts:
Àlex Argemí
Phone: +34 937 372 607

Copyright © ICN2

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article reference:

Related News Press

Magnetism/Magnons

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023

News and information

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

Graphene/ Graphite

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023

Possible Futures

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling November 4th, 2022

Chip Technology

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023

Successful morphing of inorganic perovskites without damaging their functional properties October 6th, 2023

Quantum Computing

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

A new qubit platform is created atom by atom October 6th, 2023

Discovery made by University of Warsaw scientists may enable network interface for quantum computers October 6th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Discoveries

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

Materials/Metamaterials/Magnetoresistance

Porous platinum matrix shows promise as a new actuator material November 17th, 2023

A new kind of magnetism November 17th, 2023

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

Announcements

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

Quantum nanoscience

What a “2D” quantum superfluid feels like to the touch November 3rd, 2023

A new qubit platform is created atom by atom October 6th, 2023

A quantum leap in mechanical oscillator technology August 11th, 2023

Discovery may lead to terahertz technology for quantum sensing: Metal oxide’s properties could enable wide range of terahertz frequency photonics July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project