Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling

The magnetism performances of Ag77Cu22 nanoclusters after assembly and disassembly (The inset in red circle presents the absence of spin coupling in Au250 due to the long interparticle distance)

CREDIT
XIA Nan
The magnetism performances of Ag77Cu22 nanoclusters after assembly and disassembly (The inset in red circle presents the absence of spin coupling in Au250 due to the long interparticle distance) CREDIT XIA Nan

Abstract:
In a recent paper published in Nature Communications, a team led by Prof. WU Zhikun from the Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS) of the Chinese Academy of Sciences (CAS), collaborated with Prof. ZENG Zhi group from the same institute and Prof. ZHAO Jijun group from Dalian University of Technology, discovered the spin transfer and spin coupling through the linear assembly of Ag-Cu alloy nanoclusters with sulfur.

Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling

Hefei, China | Posted on November 4th, 2022

The assembly of metal nanoparticles not only enriches their properties, but also helps to understand the structure-property relationships and the interactions between nanoparticles. However, due to the multi-distribution of metal nanocrystals, it is difficult to obtain atomically precise assembly structures; The recently emerging nanoclusters (ultrasmall nanoparticles)provide ideal building blocks for precise assembly due to their well-defined compositions and structures, however, few studies on atomically precise metal nanocluster (larger than 1 nm) assembly have been reported owing to the difficulty of synthesis and characterization.

In this study, the team prepared a linear assembly structure formed by linking two Ag77Cu22 clusters with one sulfur ion using a simultaneous synthesis and assembly strategy. The sulfur ions can be produced by the cleavage of carbon-sulfur and sulfur-hydrogen bonds of the thiols during the synthesis of the clusters, leading to the immediate link with clusters to form the assemblies.

Further studies showed that the magnetic moment in this linear assembled structure was transferred from the cluster to the sulfur, forming paramagnetic sulfur radicals, which exhibited magnetic isotropy due to the small spin-orbit coupling constants of sulfur and the absence of magnetic moment interaction between distant sulfur radicals. When the linear structures were disassembled in solution, the magnetic moment transferred back to the clusters, and subsequently spin coupling occurred. Notably, such spin coupling had not been reported in the magnetic Au250 clusters, which was interpreted by the interparticle distance dependent spin coupling. When the ligands were flexible and their lengths were short, the clusters could approach each other and the spin coupling occured within a certain distance. Otherwise it was difficult for the clusters to come close for coupling.

This work successfully achieved the linear assembly of the metal nanoclusters larger than 1 nm by using the adequate assembly strategy. It discovered and explained the spin transfer and distance-dependent spin coupling, which would have important implications for the future study of nanocluster magnetism and development of novel functional materials.

####

For more information, please click here

Contacts:
Weiwei Zhao
Hefei Institutes of Physical Science, Chinese Academy of Sciences

Office: 86-551-655-91206

Copyright © Hefei Institutes of Physical Science, Chinese Academy of Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Govt.-Legislation/Regulation/Funding/Policy

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Quantum powers researchers to see the unseen September 8th, 2023

Chloride ions from seawater eyed as possible lithium replacement in batteries of the future August 11th, 2023

Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023

Possible Futures

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Spin photonics to move forward with new anapole probe November 4th, 2022

Chip Technology

University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

The present and future of computing get a boost from new research July 21st, 2023

Scientists edge toward scalable quantum simulations on a photonic chip: A system using photonics-based synthetic dimensions could be used to help explain complex natural phenomena June 30th, 2023

Quantum Computing

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Scientists edge toward scalable quantum simulations on a photonic chip: A system using photonics-based synthetic dimensions could be used to help explain complex natural phenomena June 30th, 2023

Discoveries

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Materials/Metamaterials/Magnetoresistance

Ultrafast lasers for materials processing August 11th, 2023

Ribbons of graphene push the materialís potential: A new technique developed at Columbia offers a systematic evaluation of twist angle and strain in layered 2D materials August 11th, 2023

Understanding the diverse industrial applications of materials science: Materials Science A Field of Diverse Industrial Applications July 21st, 2023

A non-covalent bonding experience: Scientists discover new structures for unique hybrid materials by altering their chemical bonds July 21st, 2023

Announcements

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project