Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity

Time evolution of RTN signals with the corresponding RTN histograms of 1/f 2 feature in the noise power spectra at negative (a) and positive voltage (b). The high-resistance state in the 1/f2 histogram represents antiparallel spin states between layers (a) and the low-resistance state for parallel spin states between layers (b).

CREDIT
Institute for Basic Science
Time evolution of RTN signals with the corresponding RTN histograms of 1/f 2 feature in the noise power spectra at negative (a) and positive voltage (b). The high-resistance state in the 1/f2 histogram represents antiparallel spin states between layers (a) and the low-resistance state for parallel spin states between layers (b). CREDIT Institute for Basic Science

Abstract:
Random Telegraph Noise (RTN), a type of unwanted electronic noise, has long been a nuisance in electronic systems, causing fluctuations and errors in signal processing. However, a team of researchers from the Center for Integrated Nanostructure Physics within the Institute for Basic Science (IBS), South Korea has made an intriguing breakthrough that can potentially harness these fluctuations in semiconductors. Led by Professor LEE Young Hee, the team reported that magnetic fluctuations and their gigantic RTN signals can be generated in a vdW-layered semiconductor by introducing vanadium in tungsten diselenide (V-WSe2) as a minute magnetic dopant.

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity

Daegu, Republic of Korea | Posted on August 11th, 2023

High contact resistance in lateral devices usually limits the manifestation of inherent quantum states and further degrades the device’s performance. To overcome these limitations, the researchers introduced a vertical magnetic tunneling junction device by sandwiching a few layers of V-WSe2, a magnetic material, between the top and bottom graphene electrodes. This device was able to manifest inherent quantum states such as magnetic fluctuations and achieve high-amplitude RTN signals, even with a small vanadium doping concentration of just ~0.2%.

Dr. Lan-Anh T. NGUYEN, the first author of the study said, “The key to success is to realize large magnetic fluctuations in resistance by constructing vertical magnetic tunneling junction devices with low contact resistance.”

Through the resistance measurement experiments using these devices, the researchers observed RTNs with a high amplitude of up to 80% between well-defined two-stable states. In the bistable state, the magnetic fluctuations in resistance prevail with temperature through the competition between intralayer and interlayer coupling among the magnetic domains. They were able to identify this bistable magnetic state through discrete Gaussian peaks in the RTN histogram with distinctive features in the noise power spectrum.

Most importantly the researchers discovered the ability to switch the bistable magnetic state and the cut-off frequency of the RTN simply by changing the voltage polarity. This exciting discovery paves the way for the application of 1/f2 noise spectroscopy in magnetic semiconductors and offers magnetic switching capability in spintronics.

“This is a first step to observe the bistable magnetic state from large resistance fluctuations in magnetic semiconductors and offers the magnetic switching capability with 1/f2 noises by means of simple voltage polarity in spintronics”, explained Professor Lee.

This work was done through interdisciplinary research in collaboration with JOO Min-Kyu at Sookmyung Women’s University and KIM Philip at Harvard University.

####

For more information, please click here

Contacts:
William Suh
Institute for Basic Science

Office: 82-010-379-37830

Copyright © Institute for Basic Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

New method in the fight against forever chemicals September 13th, 2024

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum Physics

Energy transmission in quantum field theory requires information September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Spintronics

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Spin photonics to move forward with new anapole probe November 4th, 2022

Novel nanowire fabrication technique paves way for next generation spintronics November 4th, 2022

Chip Technology

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Discoveries

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Announcements

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

New method in the fight against forever chemicals September 13th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project