Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Novel nanowire fabrication technique paves way for next generation spintronics

CREDIT
Tokyo Tech
CREDIT Tokyo Tech

Abstract:
As our world modernizes faster than ever before, there is an ever-growing need for better and faster electronics and computers. Spintronics is a new system which uses the spin of an electron, in addition to the charge state, to encode data, making the entire system faster and more efficient. Ferromagnetic nanowires with high coercivity (resistance to changes in magnetization) are required to realize the potential of spintronics. Especially L10-ordered (a type of crystal structure) cobalt–platinum (CoPt) nanowires.

Novel nanowire fabrication technique paves way for next generation spintronics

Tokyo, Japan | Posted on November 4th, 2022

Conventional fabrication processes for L10-ordered nanowires involve heat treatment to improve the physical and chemical properties of the material, a process called annealing on the crystal substrate; the transfer of a pattern onto the substrate through lithography; and finally the chemical removal of layers through a process called etching. Eliminating the etching process by directly fabricating nanowires onto the silicon substrate would lead to a marked improvement in the fabrication of spintronic devices. However, when directly fabricated nanowires are subjected to annealing, they tend to transform into droplets as a result of the internal stresses in the wire.

Recently, a team of researchers led by Professor Yutaka Majima from the Tokyo Institute of Technology have found a solution to the problem. The team reported a new fabrication process to make L10-ordered CoPt nanowires on silicon/silicon dioxide (Si/SiO2) substrates. Talking about their research, published in Nanoscale Advances, Prof. Majima says, “Our nanostructure-induced ordering method allows the direct fabrication of ultrafine L10-ordered CoPt nanowires with the narrow widths of 30nm scale required for spintronics. This fabrication method could further be applied to other L10-ordered ferromagnetic materials such as iron–platinum and iron–palladium compounds.”

In this study, the researchers first coated a Si/SiO2 substrate with a material called a ‘resist’ and subjected it to electron beam lithography and evaporation to create a stencil for the nanowires. Then then deposited a multilayer of CoPt on the substrate. The deposited sampled were then ‘lifted-off’, leaving behind CoPt nanowires. These nanowires were then subjected to high temperature annealing. The researchers also examined the fabricated nanowires using several characterization techniques.

They found that the nanowires took on L10-ordering during the annealing process. This transformation was induced by atomic interdiffusion, surface diffusion, and extremely large internal stress at the ultrasmall 10 nm scale curvature radii of the nanowires. They also found that the nanowires exhibited a large coercivity of 10 kiloOersteds (kOe).

According to Prof. Majima, “The internal stresses on the nanostructure here induce the L10-ordering. This is a different mechanism than in previous studies. We are hopeful that this discovery will open up a new field of research called ‘nanostructure-induced materials science and engineering.’”

The wide applicability and convenience of the novel fabrication technique is sure to make a significant contribution to the field of spintronics research.

####

For more information, please click here

Contacts:
Reiko Hattori
Tokyo Institute of Technology

Office: +81-3-57343794

Copyright © Tokyo Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Physics

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Milestones achieved on the path to useful quantum technologies: Researchers at Paderborn and Ulm universities are developing the first programmable optical quantum memory October 7th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

Master equation to boost quantum technologies: FQXi-funded analysis will help physicists exert exquisitely precise real-time feedback control over quantum systems August 26th, 2022

Possible Futures

One of the causes of aggressive liver cancer discovered: a 'molecular staple' that helps repair broken: DNA Researchers describe a new DNA repair mechanism that hinders cancer treatment January 27th, 2023

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023

UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023

Spintronics

Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling November 4th, 2022

Spin photonics to move forward with new anapole probe November 4th, 2022

“Kagome” metallic crystal adds new spin to electronics October 28th, 2022

Liquid crystal templated chiral nanomaterials October 14th, 2022

Quantum Computing

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

Department of Energy announces $9.1 million for research on quantum information science and nuclear physics: Projects span the development of quantum computing, algorithms, simulators, superconducting qubits, and quantum sensors for advancing nuclear physics January 27th, 2023

Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023

Dawn of solid-state quantum networks: Researchers demonstrated high-visibility quantum interference between two independent semiconductor quantum dots — an important step toward scalable quantum networks January 6th, 2023

Discoveries

One of the causes of aggressive liver cancer discovered: a 'molecular staple' that helps repair broken: DNA Researchers describe a new DNA repair mechanism that hinders cancer treatment January 27th, 2023

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Announcements

UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Department of Energy announces $9.1 million for research on quantum information science and nuclear physics: Projects span the development of quantum computing, algorithms, simulators, superconducting qubits, and quantum sensors for advancing nuclear physics January 27th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project