Home > Press > Magnetism in new exotic material opens the way for robust quantum computers
![]() |
Illustration of a new strategy to create materials with robust quantum properties, by harnessing magnetic interactions (represented by the red and blue arrows). The small green spheres represent sites where electrons can reside and move along the chain. Special magnetic atoms (purple spheres with arrows) interact with the electrons at certain sites, shown by the blueish clouds. These interactions create protected edge states (green cloud) that could help make quantum computers more stable and less sensitive to noise. Credit Illustration: Jose L. Lado |
Abstract:
The entry of quantum computers into society is currently hindered by their sensitivity to disturbances in the environment. Researchers from Chalmers University of Technology in Sweden, and Aalto University and the University of Helsinki in Finland, now present a new type of exotic quantum material, and a method that uses magnetism to create stability. This breakthrough can make quantum computers significantly more resilient – paving the way for them to be robust enough to tackle quantum calculations in practice.
At the atomic scale, the laws of physics deviate from those in our ordinary large-scale world. There, particles adhere to the laws of quantum physics, which means they can exist in multiple states simultaneously and influence each other in ways that are not possible within classical physics. These peculiar but powerful phenomena hold the key to quantum computing and quantum computers, which have the potential to solve problems that no conventional supercomputer can handle today.
But before quantum calculations can benefit society in practice, physicists need to solve a major challenge. Qubits, the basic units of a quantum computer, are extremely delicate. The slightest change in temperature, magnetic field, or even microscopic vibrations causes the qubits to lose their quantum states – and thus also their ability to perform complex calculations reliably.
To solve the problem, researchers in recent years have begun exploring the possibility of creating materials that can provide better protection against these types of disturbances and noise in their fundamental structure – their topology. Quantum states that arise and are maintained through the structure of the material used in qubits are called topological excitations and are significantly more stable and resilient than others. However, the challenge remains to find materials that naturally support such robust quantum states.
Newly developed material protects against disturbances
Now, a research team from Chalmers University of Technology, Aalto University, and the University of Helsinki has developed a new quantum material for qubits that exhibits robust topological excitations. The breakthrough is an important step towards realising practical topological quantum computing by constructing stability directly into the material's design.
“This is a completely new type of exotic quantum material that can maintain its quantum properties when exposed to external disturbances. It can contribute to the development of quantum computers robust enough to tackle quantum calculations in practice”, says Guangze Chen, postdoctoral researcher in applied quantum physics at Chalmers and lead author of the study published in Physical Review Letters.
‘Exotic quantum materials’ is an umbrella term for several novel classes of solids with extreme quantum properties. The search for such materials, with special resilient properties, has been a long-standing challenge.
Magnetism is the key in the new strategy
Traditionally, researchers have followed a well-established ‘recipe’ based on spin-orbit coupling, a quantum interaction that links the electron's spin to its movement orbit around the atomic nucleus to create topological excitations. However, this ‘ingredient’ is relatively rare, and the method can therefore only be used on a limited number of materials.
In the study, the research team presents a completely new method that uses magnetism – a much more common and accessible ingredient – to achieve the same effect. By harnessing magnetic interactions, the researchers were able to engineer the robust topological excitations required for topological quantum computing.
“The advantage of our method is that magnetism exists naturally in many materials. You can compare it to baking with everyday ingredients rather than using rare spices”, explains Guangze Chen. “This means that we can now search for topological properties in a much broader spectrum of materials, including those that have previously been overlooked.”
Paving the way for next-generation quantum computer platforms
To accelerate the discovery of new materials with useful topological properties, the research team has also developed a new computational tool. The tool can directly calculate how strongly a material exhibits topological behaviour.
“Our hope is that this approach can help guide the discovery of many more exotic materials”, says Guangze Chen. “Ultimately, this can lead to next-generation quantum computer platforms, built on materials that are naturally resistant to the kind of disturbances that plague current systems.”
####
For more information, please click here
Contacts:
Media Contact
Johanna Wilde
Chalmers University of Technology
Office: 46-317-722-029
Expert Contact
Guangze Chen
Chalmers University of Technology
Office: +46 72 447 4457
Copyright © Chalmers University of Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Physics
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
Magnetism/Magnons
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Possible Futures
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Quantum Computing
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |