Home > Press > Designer electronics out of the printer: Optimized printing process enables custom organic electronics
![]() |
Organic electronics, based on conducting polymers, are hailed as a promising future market. This is the cover illustration of Advanced Materials (10.1002/adma.201570148). CREDIT: Artwork: Christoph Hohmann / Nanosystems Initiative Munich |
Abstract:
They are thin, light-weight, flexible and can be produced cost- and energy-efficiently: printed microelectronic components made of synthetics. Flexible displays and touch screens, glowing films, RFID tags and solar cells represent a future market. In the context of an international cooperation project, physicists at the Technische Universität München (TUM) have now observed the creation of razor thin polymer electrodes during the printing process and successfully improved the electrical properties of the printed films.
Solar cells out of a printer? This seemed unthinkable only a few years ago. There were hardly any alternatives to classical silicon technology available. In the mean time touch screens, sensors and solar cells can be made of conducting polymers. Flexible monitors and glowing wall paper made of organic light emitting diodes, so-called OLEDs, are in rapid development. The "organic electronics" are hailed as a promising future market.
However, the technology also has its pitfalls: To manufacture the components on an industrial scale, semiconducting or insulating layers - each a thousand times thinner than a human hair - must be printed onto a carrier film in a predefined order. "This is a highly complex process, whose details need to be fully understood to allow custom-tailored applications," explains Professor Peter Müller-Buschbaum of the Chair of Functional Materials at TU München.
A further challenge is the contacting between flexible, conducting layers. Hitherto electronic contacts made of crystalline indium tin oxide were frequently used. However, this construction has numerous drawbacks: The oxide is more brittle than the polymer layers over them, which limits the flexibility of the cells. Furthermore, the manufacturing process also consumes much energy. Finally, indium is a rare element that exists only in very limited quantities.
Polymers in X-ray light
A few months ago, researchers from the Lawrence Berkeley National Laboratory in California for the first time succeeded in observing the cross-linking of polymer molecules in the active layer of an organic solar cell during the printing process. In collaboration with their colleagues in California, Müller-Buschbaum's team took advantage of this technology to improve the characteristics of the polymer electronic elements.
The researchers used X-ray radiation generated in the Berkley synchrotron for their investigations. The X-rays are directed to the freshly printed synthetic layer and scattered. The arrangement and orientation of the molecules during the curing process of the printed films can be determined from changes in the scattering pattern.
"Thanks to the very intensive X-ray radiation we can achieve a very high time resolution," says Claudia M. Palumbiny. In Berkeley the physicist from the TUM investigated the "blocking layer" that sorts and selectively transports the charge carriers in the organic electronic components. The TUM research team is now, together with its US colleagues, publishing the results in the trade journal Advanced Materials.
Custom properties
"In our work, we showed for the first time ever that even small changes in the physico-chemical process conditions have a significant influence on the build-up and properties of the layer," says Claudia M. Palumbiny. "Adding solvents with a high boiling point, for example, improves segregation in synthetics components. This improves the crystallization in conducting molecules. The distance between the molecules shrinks and the conductivity increases.
In this manner stability and conductivity can be improved to such an extent that the material can be deployed not only as a blocking layer, but even as a transparent, electrical contact. This can be used to replace the brittle indium tin oxide layers. "At the end of the day, this means that all layers could be produced using the same process," explains Palumbiny. "That would be a great advantage for manufacturers."
To make all of this possible one day, TUM researchers want to continue investigating and optimizing the electrode material further and make their know-how available to industry. "We have now formed the basis for pushing ahead materials development with future investigations so that these can be taken over by industrial enterprises," explains Prof. Müller-Buschbaum.
###
The research was supported by the GreenTech Initiative "Interface Science for Photovoltaics" (ISPV) of the EuroTech Universities together with the International Graduate School of Science and Engineering (IGSSE) at TUM and by the Cluster of Excellence "Nanosystems Initiative Munich" (NIM). Further support came from the Elite Network of Bavaria's International Doctorate Program "NanoBioTechnology" (IDK-NBT) and the Center for NanoScience (CeNS) and from "Polymer-Based Materials for Harvesting Solar Energy" (PHaSE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences. Portions of the research were carried out at the Advanced Light Source which receives support by the Office of Basic Energy Sciences of the U.S. Department of Energy.
Publication:
The Crystallization of PEDOT:PSS Polymeric Electrodes Probed In Situ during Printing
Claudia M. Palumbiny, Feng Liu, Thomas P. Russell, Alexander Hexemer, Cheng Wang, and Peter Müller-Buschbaum
Advanced Materials, June 10, 2015, 27, 22, 3391-3397 - DOI: 10.1002/adma.201500315
####
For more information, please click here
Contacts:
Dr. Andreas Battenberg
49-892-891-0510
Copyright © Technische Universitaet Muenchen
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023
Lipid nanoparticles highly effective in gene therapy March 3rd, 2023
Display technology/LEDs/SS Lighting/OLEDs
3D-printed decoder, AI-enabled image compression could enable higher-res displays December 9th, 2022
Physicists from the University of Warsaw and the Military University of Technology have developed a new photonic system with electrically tuned topological features October 14th, 2022
Liquid crystal templated chiral nanomaterials October 14th, 2022
Research improves upon conventional LED displays: With new technology, LEDs can be more cost-efficient and last longer September 9th, 2022
Govt.-Legislation/Regulation/Funding/Policy
Novel microscope developed to design better high-performance batteries: Innovation gives researchers inside view of how batteries work February 10th, 2023
Sensors
Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023
Discoveries
Scientists develop self-tunable electro-mechano responsive elastomers March 3rd, 2023
Recent progress of carbon-based non-noble metal single-atom catalysts for energy conversion electrocatalysis March 3rd, 2023
Materials/Metamaterials
Scientists develop self-tunable electro-mechano responsive elastomers March 3rd, 2023
Make them thin enough, and antiferroelectric materials become ferroelectric February 10th, 2023
Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022
Announcements
Recent progress of carbon-based non-noble metal single-atom catalysts for energy conversion electrocatalysis March 3rd, 2023
Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Recent progress of carbon-based non-noble metal single-atom catalysts for energy conversion electrocatalysis March 3rd, 2023
Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023
Energy
Make them thin enough, and antiferroelectric materials become ferroelectric February 10th, 2023
Stability of perovskite solar cells reaches next milestone January 27th, 2023
Temperature-sensing building material changes color to save energy January 27th, 2023
Research partnerships
Polymer p-doping improves perovskite solar cell stability January 20th, 2023
New insights into energy loss open doors for one up-and-coming solar tech November 18th, 2022
Solar/Photovoltaic
Stability of perovskite solar cells reaches next milestone January 27th, 2023
New method addresses problem with perovskite solar cells: NREL researchers provide growth approach that boosts efficiency, stability December 29th, 2022
Predicting the device performance of the perovskite solar cells from the experimental parameters through machine learning of existing experimental results November 18th, 2022
RFID
Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017
Conformal transfer of graphene for reproducible device fabrication August 11th, 2015
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Disposable electronics on a simple sheet of paper October 7th, 2022
On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |