Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors

Abstract:
There was a time during the early development of portable electronics when the biggest hurdle to overcome was making the device small enough to be considered portable. After the invention of the microprocessor in the early 1970s, miniature, portable electronics have become commonplace and ever since the next challenge has been finding an equally small and reliable power source. Chemical batteries store a lot of energy but require a long period of time for that energy to charge and discharge plus have a limited lifespan. Capacitors charge quickly but cannot store enough charge to work for long enough to be practical. One possible solution is something called a solid-state micro-supercapacitor (MSC). Supercapacitors are armed with the power of a battery and can also sustain that power for a prolonged period time. Researchers have attempted to create MSCs in the past using various hybrids of metals and polymers but none were suitable for practical use. In more recent trials using graphene and carbon nanotubes to make MSCs, the results were similarly lackluster.

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors

Daejeon, Republic of Korea | Posted on July 2nd, 2015

An international team of researchers led by Young Hee Lee, including scientists from the Center for Integrated Nanostructure Physics at the Institute for Basic Science (IBS) and Department of Energy Science at Sungkyunkwan University in South Korea, has devised a new technique for creating an MSC that doesn’t have the shortcomings of previous attempts but instead delivers high electrochemical performance.

When designing something new and complex, sometimes the best inspiration is one already found in nature. The team modeled their MSC film structure on natural vein-textured leaves in order to take advantage of the natural transport pathways which enable efficient ion diffusion parallel to the graphene planes found within them.

To create this final, efficient shape, the team layered a graphene-hybrid film with copper hydroxide nanowires. After many alternating layers they achieved the desired thickness, and added an acid solution to dissolve the nanowires so that a thin film with nano-impressions was all that remained.

To fabricate the MSCs the film was applied to a plastic layer with thin, ~5μm long parallel gold strips placed on top. Everything not covered by the gold strips was chemically etched away so that only the gold strips on top of a layer of film were left. Gold contact pads perpendicular to the gold strips were added and a conductive gel filled in the remaining spaces and was allowed to solidify. Once peeled from the plastic layer, the finished MSCs resemble clear tape with gold electrical leads on opposite sides.

The team produced stunning test results. In addition to its superior energy density, the film is highly flexible and actually increases capacitance after initial use. The volumetric energy density was 10 times higher than currently available commercial supercapacitors and also far superior to any other recent research. The MSCs are displaying electrical properties about five orders of magnitude higher than similar lithium batteries and are comparable to existing, larger supercapacitors. According to Lee, “To our knowledge, the volumetric energy density and the maximum volumetric power density in our work are the highest values among all carbon-based solid-state MSCs reported to date.”

In the future, consumers will likely power their devices with MSCs instead of batteries. Applications for light, reliable energy storage combined with a long lifespan and fast charge/discharge time. The team’s MSCs could be embedded into an electronic circuit chip as power sources for practical applications such as implantable medical devices, active radio frequency identification tags, and micro robots. If engineers utilize the material’s incredible flexibility, these MSCs could be utilized in portable, stretchable, and even wearable electronic devices.

####

About Institute for Basic ScienceInstitute for Basic Science
IBS was founded in 2011 by the government of the Republic of Korea with the sole purpose of driving forward the development of basic science in Korea It comprises a total of 50 research centers in all fields of basic science, including mathematics, physics, chemistry, life science, earth science and interdisciplinary science. IBS has launched 24 research centers as of January 2015.There are eight physics, one mathematics, six chemistry, seven life science, and two interdisciplinary research centers.

For more information, please click here

Contacts:
Mr. Shi Bo Shim
Head of Department of Communications
Institute for Basic Science
+82-42-878-8189


Ms. Sunny Kim
Department of Communications
Institute for Basic Science+82-42-878-8135

Copyright © AlphaGalileo Ltd

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

References

Related News Press

News and information

New method in the fight against forever chemicals September 13th, 2024

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Flexible Electronics

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

CityU awarded invention: Soft, ultrathin photonic material cools down wearable electronic devices June 30th, 2023

Liquid metal sticks to surfaces without a binding agent June 9th, 2023

Breaking through the limits of stretchable semiconductors with molecular brakes that harness light June 9th, 2023

Sensors

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

Announcements

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

New method in the fight against forever chemicals September 13th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

RFID

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

Conformal transfer of graphene for reproducible device fabrication August 11th, 2015

GLOBALFOUNDRIES Launches Industry’s First 22nm FD-SOI Technology Platform: 22FDX offers the best combination of performance, power consumption and cost for IoT, mainstream mobile, RF connectivity, and networking July 13th, 2015

Designer electronics out of the printer: Optimized printing process enables custom organic electronics June 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project