Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Applied Nanotech Unveils Low-Cost Micron Copper Ink for Electronic Applications: Can replace more expensive silver inks used in the growing printed electronics industry

Abstract:
Applied Nanotech Holdings, Inc. (OTC BB: APNT), a global leader in nanotechnology, is pleased to introduce a new copper ink material based on micron copper particles for low-cost direct printing of electronic circuits for mobile devices, solar cells, display devices, and more.

Applied Nanotech Unveils Low-Cost Micron Copper Ink for Electronic Applications: Can replace more expensive silver inks used in the growing printed electronics industry

Austin, TX | Posted on August 9th, 2012

The new microcopper ink material joins Applied Nanotech's award-winning nanocopper ink, which won an R&D 100 award from R&D Magazine in 2010. The novel copper ink is specially designed to replace expensive silver-based conductors for rapidly developing applications in the printed electronics industry. Applied Nanotech's microcopper ink has an optimal combination of high conductivity and ease of processing that allows for direct replacement of silver inks and pastes at significantly lower cost.

"Microcopper inks fill a need for lower-cost conductive materials used for applications such as smart cards, RFID antennas, touchscreens and sensors in smart phones, just to name a few," said Dr. James Novak, Director of the Nanoelectronics Division. "Furthermore, the microcopper ink retains all key advantages of nanomaterial-based copper ink, such as low-temperature sintering and ease of application."

Applied Nanotech's microcopper ink material is easily applied on various substrates by a number of additive print processes such as screen, flexographic and gravure printing, as well as some advanced dispensing techniques. This eliminates the cost and waste stream compared to other approaches, including lithography, used presently in the manufacturing of printed electronics circuits such as printed circuit boards (PCBs), for example.

The microcopper ink is engineered to be compatible with photosintering curing processes and equipment-enabling printed trace conductors on substrates with maximum temperature limitations. The process has been demonstrated on most preferred substrates used in printed electronic applications including PET, PEN, polycarbonate, ABS, and even epoxy-based FR4 circuit board material, The microcopper ink can also be used as a patterned seed layer for electroplating and metal finishing.

"Mobile and display devices, as well as solar cells, represent very large markets that are constantly seeking to improve product quality and manufacturing efficiencies utilizing higher quality but less expensive materials such as the microcopper and nanocopper inks. Our inks and pastes are joining our growing portfolio of products that will impact our top and bottom line through direct sales," said Doug Baker, CEO of Applied Nanotech Holdings, Inc.

####

About Applied Nanotech Holdings, Inc.
Applied Nanotech Holdings, Inc. is a global nanotechnology leader, focused on solving problems at the molecular level, and commercializing the results of its research. Its team of PhD-level scientists and engineers work with companies and other organizations to solve technical impasses and create innovations that will create a competitive advantage. The business model is to sell products and license patents and technology to partners that will manufacture and distribute products using the technology. Applied Nanotech has over 300 patents or patents pending. Applied Nanotech's website is www.appliednanotech.net.

SAFE HARBOR STATEMENT

This press release contains forward-looking statements that involve risks and uncertainties concerning our business, products, and financial results. Actual results may differ materially from the results predicted. More information about potential risk factors that could affect our business, products, and financial results are included in our annual report on Form 10-K for the fiscal year ended December 31, 2011, and in reports subsequently filed by us with the Securities and Exchange Commission ("SEC"). All documents are available through the SEC's Electronic Data Gathering Analysis and Retrieval System (EDGAR) at www.sec.gov or from our website listed above. We hereby disclaim any obligation to publicly update the information provided above, including forward-looking statements, to reflect subsequent events or circumstances.

For more information, please click here

Contacts:
512-327-2803

Copyright © Applied Nanotech Holdings, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023

Chip Technology

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

RFID

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

Conformal transfer of graphene for reproducible device fabrication August 11th, 2015

GLOBALFOUNDRIES Launches Industry’s First 22nm FD-SOI Technology Platform: 22FDX offers the best combination of performance, power consumption and cost for IoT, mainstream mobile, RF connectivity, and networking July 13th, 2015

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project