Home > Press > Terahertz light-driven spin-lattice control: A new potential path to faster and more efficient data storage
Abstract:
An international team of researchers from the University of Cologne (Germany), Radboud University Nijmegen (The Netherlands), the Ioffe Institute and the Prokhorov General Physics Institute (Russia) has discovered a new mechanism to control spin-lattice interaction using ultrashort terahertz (THz) pulses (terahertz means 1012 hertz). This mechanism can open up new and elegant ways to control propagation of spin waves and thus make an important step to conceptually new technologies of data processing in future. The results have been published in a recent Science publication entitled ‘Terahertz light-driven coupling of antiferromagnetic spins to lattice’.
Currently magnetic data recording is dominating data storage technology. It is estimated that soon, more than 7% of the world’s energy production will be spent on data storage centres. Hence there is an urgent demand to develop new technologies to process and store data using ultrafast processes in an energy efficient manner.
Spin-lattice interaction plays a decisive role in magnetic recording processes, where a spin is the elementary magnetic moment of an electron, whose orientation control (up and down) is the base of modern binary computer systems. The scientists used special antiferromagnets in their study – materials in which the ordered spins of electrons align in a regular pattern with neighbouring spins pointing in opposite directions. The collective motion of spins in these materials, so-called spin waves, are typically 10 times faster than their counterparts in traditional ferromagnetic materials. In contrast to electrons, such spin waves practically do not interact with the crystal lattice and thus can propagate over microscopic distances without losses. In the future spintronics could replace traditional electronics and function as a carrier of information in a magnetic material. This brings the potential for much faster and efficient data processing. At the same time, the weak interaction makes control over propagation of the spin waves challenging. The scientists then ‘drive’ the spin-lattice coupling by applying an ultrashort terahertz pulse.
Dr. Evgeny Mashkovich, Senior Researcher at the Optical Condensed Matter Science group at the University of Cologne’s Institute for Experimental Physics said: ‘We showed that we can now control the interaction between lattice and spin waves and, moreover, make it a strong interaction. I believe that this discovery is an important step towards conceptually new technologies for ultrafast data processing and efficient data storage in the future.’
####
For more information, please click here
Contacts:
Eva Schissler
University of Cologne
Office: +49 221 470 4030
Copyright © University of Cologne
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022
New nanomechanical oscillators with record-low loss May 13th, 2022
Small microring array enables large complex-valued matrix multiplication May 13th, 2022
Magnetism/Magnons
‘Nanomagnetic’ computing can provide low-energy AI, researchers show May 6th, 2022
Using magnets to toggle nanolasers leads to better photonics: Controlling nanolasers with magnets lays the groundwork for more robust optical signalling December 24th, 2021
Possible Futures
Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022
New nanomechanical oscillators with record-low loss May 13th, 2022
Small microring array enables large complex-valued matrix multiplication May 13th, 2022
Spintronics
Magnet-free chiral nanowires for spintronic devices March 18th, 2022
NGI advances graphene spintronics as 1D contacts improve mobility in nano-scale devices February 11th, 2022
Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021
Memory Technology
Reconfigurable silicon nanoantennas controlled by vectorial light field May 6th, 2022
Artificial neurons go quantum with photonic circuits: Quantum memristor as missing link between artificial intelligence and quantum computing March 25th, 2022
Mass production of revolutionary computer memory moves closer with ULTRARAM™ on silicon wafers for the first time January 7th, 2022
Discoveries
New nanomechanical oscillators with record-low loss May 13th, 2022
Small microring array enables large complex-valued matrix multiplication May 13th, 2022
Announcements
Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022
New nanomechanical oscillators with record-low loss May 13th, 2022
Small microring array enables large complex-valued matrix multiplication May 13th, 2022
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022
On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022
Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |