Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > HKUST scientists discover new mechanisms of activity improvement on bimetallic catalysts for hydrogen generation and fuel cells

Ruthenium atoms supported on platinum are extremely active to produce hydrogen

CREDIT
HKUST
Ruthenium atoms supported on platinum are extremely active to produce hydrogen CREDIT HKUST

Abstract:
A group of researchers at the Hong Kong University of Science and Technology (HKUST) and Xiamen University has revealed new understandings of how surface ruthenium atoms can improve the hydrogen evolution and oxidation activities of platinum. This discovery opens a new venue for rational design of more advanced catalysts for electrolyzer and fuel cell applications.

HKUST scientists discover new mechanisms of activity improvement on bimetallic catalysts for hydrogen generation and fuel cells

Hong Kong, China | Posted on August 13th, 2021

Hydrogen is a clean energy carrier that does not contain carbon. It is believed to play an essential role in our future sustainable society. Hydrogen can be produced from water via the hydrogen evolution reaction (HER) in an electrolyzer by using renewable energies, and consumed via a hydrogen oxidation reaction (HOR) in a fuel cell to generate electricity. Unfortunately, these two reactions are well-known kinetically sluggish in alkaline media, even on the most active platinum catalysts. The slow reaction rates limit the efficiencies of these two electrochemical devices and hinder their wide adoption. It has been known that the reaction rates of HER/HOR on platinum can be improved by surface modification or alloying with ruthenium. However, the mechanisms for this promotion have been under debate for over decades. Part of the reasons is a lack of direct observation of behaviors of hydrogen atoms on the surfaces of catalysts.

To reveal the enigma of high HER/HOR activities on platinum-ruthenium bimetallic catalysts, a research team led by Prof. Minhua Shao, Department of Chemical and Biological Engineering and Energy Institute at HKUST, recently applied the powerful surface-enhanced infrared absorption spectroscopy (SEIRAS) to directly monitor the binding strength of the important reaction intermediate, hydrogen atoms on various surfaces. Through the combined electrochemical, spectroscopic, and theoretical studies they confirmed the surface ruthenium atoms interacted with the sub-surface platinum is one order of magnitude more active than platinum, i.e., the ruthenium rather than platinum atoms are main active sites in this system.

“Previous works mainly used conventional electrochemical and characterization techniques, which cannot directly monitor the adsorption behavior of hydrogen reaction intermediates. In this work, we use the powerful surface-enhanced infrared absorption spectroscopy, which is among the very few techniques that can directly “see” surface hydrogen atoms, and provides us more straightforward information on how ruthenium improves the activity” said Prof. Shao. “This work rules out the most widespread theory that the bifunctional effect on the interface between platinum and ruthenium is the cause of increased activities, and opens new directions on future design of more advanced HER/HOR catalysts, which can consequently reduce the usage of precious metals in both water electrolyzers and hydrogen fuel cells.”

This work is part of the newly founded Collaborative Research Fund project led by Prof. Shao “Development of high-performance and long-life alkaline membrane fuel cells”, and constitutes an important subsection of fundamental research to this whole project. Following works on the development of practical and high-performance bimetallic platinum-ruthenium electrocatalysts based on these findings is in progress.

####

For more information, please click here

Contacts:
Johnny Tam

Office: 852-235-88556

Copyright © Hong Kong University of Science and Technology (HKUST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

This study was recently published in Nature Catalysis entitled “The Role of Ruthenium in Improving the Kinetics of Hydrogen Oxidation and Evolution Reactions of Platinum”:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project