Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Future of portable electronics -- Novel organic semiconductor with exciting properties: Researchers synthesize a new substance that can potentially be adapted to form a semiconductor with wide applications in electronics

Abstract:
Semiconductors are substances that have a conductivity between that of conductors and insulators. Due to their unique properties of conducting current only in specific conditions, they can be controlled or modified to suit our needs. Nowhere is the application of semiconductors more extensive or important than in electrical and electronic devices, such as diodes, transistors, solar cells, and integrated circuits.

Future of portable electronics -- Novel organic semiconductor with exciting properties: Researchers synthesize a new substance that can potentially be adapted to form a semiconductor with wide applications in electronics

Tokyo, Japan | Posted on September 13th, 2019

Semiconductors can be made of either organic (carbon-based) or inorganic materials. Recent trends in research show that scientists are opting to develop more organic semiconductors, as they have some clear advantages over inorganic semiconductors. Now, scientists, led by Prof Makoto Tadokoro of the Tokyo University of Science, report on the synthesis of a novel organic substance with potential applications as an n-type semiconductor. This study is published in the journal Organic and Biomolecular Chemistry. According to Prof Makoto Tadokoro, "organic semiconductor devices, unlike hard inorganic semiconductor devices, are very soft and are useful for creating adhesive portable devices that can easily fit on a person." However, despite the advantages of organic semiconductors, there are very few known stable molecules that bear the physical properties of n-type semiconductors, compared to inorganic n-type semiconductors.

N-heteroheptacenequinone is a well-known potential candidate for n-type semiconductor materials. However, it has some drawbacks: it is unstable in air and UV-visible light, and it is insoluble in organic solvents. These disadvantages obstruct the practical applications of this substance as a semiconductor.

A team of Japanese scientists--Dr. Kyosuke Isoda (Faculty of Engineering and Design, Kagawa University; ex-Tokyo University of Science), Mr. Mitsuru Matsuzaka (ex-Tokyo University of Science), Dr. Tomoaki Sugaya (Chiba Institute of Technology, ex-Tokyo University of Science), and Prof Tadokoro--aimed to bridge this gap, and identified a novel substance called C6OAHCQ, derived from N-heteroheptacenequinone, that overcomes the drawbacks of N-heteroheptacenequinone.

To obtain this substance, N-heteroheptacenequinone was made to undergo four-step process of chemical reactions involving repetitive refluxing, evaporation, recrystallization, and heating. The final product achieved was C6OAHCQ, a red solid. C6OAHCQ has a unique crystalline near-planar structure involving two tetraazanaphthacene "backbones" and one benzoquinone backbone. It has eight electron-deficient imino-N atoms and two carbonyl moieties.

To confirm its electrochemical properties, C6OAHCQ was made to undergo a series of tests including a UV-visible absorption spectroscopy in the solution state, cyclic voltammetry, and theorical calculation of electrostatic potential. It was also compared with a tetraazapentacenequinone analog.

These tests revealed some unique properties of C6OAHCQ. The electron-deficient imino-N atoms and two carbonyl moieties in C6OAHCQ provide it with an electron-accepting behavior. In fact, the number of electrons accepted by C6OAHCQ is more than that by fullerene C60, which suggests improved conductivity. Cyclic voltammetry showed that C6OAHCQ exhibited reversible four-step, four-electron reduction waves, which indicated that C6OAHCQ is stable and has good electrostatic potential; the UV-visible spectroscopy also showed its stability in UV-visible light. C6OAHCQ also showed electrochromic properties, which enable its potential application in many specialized areas such as the development of smart windows, electrochromic mirrors, and electrochromic display devices. C6OAHCQ was also found to have excellent solubility in common organic solvents. It was overall found to be advantageous and had improved properties compared to the tetraazapentacenequinone analog.

The synthesis of organic C6OAHCQ is a new step forward in semiconductor research, due to its distinctive properties that distinguish it from existing organic semiconductors. C6OAHCQ is also a revolutionary step in the current research scenario dominated by inorganic semiconductors. Prof Tadokoro and team assert the importance of this novel substance, stating, "the identification of this organic acceptor molecular skeleton that has the property of stably receiving electrons is very important, as it can be used to develop molecular devices with new functionality. These devices are soft, unlike hard inorganic semiconductor devices, and can help to create portable devices."

####

For more information, please click here

Contacts:
Tsutomu Shimizu

Copyright © Tokyo University of Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

News and information

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Researchers use breakthrough method to answer key question about electron states September 24th, 2021

Chemistry

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Enhanced ambient ammonia photosynthesis by Mo-doped Bi5O7Br nanosheets with light-switchable oxygen vacancies September 3rd, 2021

Harnessing sunlight to fuel the future through covalent organic frameworks: Scientists underscore the potential of a new class of materials to convert sunlight to fuel August 13th, 2021

HKUST scientists discover new mechanisms of activity improvement on bimetallic catalysts for hydrogen generation and fuel cells August 13th, 2021

Display technology/LEDs/SS Lighting/OLEDs

New substance classes for nanomaterials: Nano spheres and diamond slivers made of silicon and germanium: Potential applications as nano semiconductor materials September 10th, 2021

Organic Electronics

Molecular coating enhances organic solar cells June 11th, 2021

Light-emitting tattoo engineered for the first time: Scientists at UCL and the IIT -Istituto Italiano di Tecnologia (Italian Institute of Technology) have created a temporary tattoo with light-emitting technology used in TV and smartphone screens, paving the way for a new type of March 4th, 2021

Going Organic: uOttawa team realizing the limitless possibilities of wearable electronics January 28th, 2021

Flexible Electronics

A molecule like a nanobattery: Chemical scientists decipher complex electronic structure of a three-nuclear metallorganic compound with the capacity of donating and receiving multiple electrons June 9th, 2021

Threads that sense how and when you move? New technology makes it possible: Engineers created thread sensors that can be attached to skin to measure movement in real time, with potential implications for tracking health and performance January 29th, 2021

Hardware

A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Do you Kyoto? World-leading companies share their approaches to environmentally friendly business at NAUMí19 October 14th, 2019

Possible Futures

Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021

MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Chip Technology

Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Switching on a superfluid: Exotic phase transitions unlock pathways to future, superfluid-based technologies September 24th, 2021

Discoveries

Fabricating MgB2 superconductors using spark plasma sintering and pulse magnetization: New research suggests that highly dense MgB2 bulks have improved mechanical and superconducting properties September 24th, 2021

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Researchers use breakthrough method to answer key question about electron states September 24th, 2021

Announcements

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Researchers use breakthrough method to answer key question about electron states September 24th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021

MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021

Fabricating MgB2 superconductors using spark plasma sintering and pulse magnetization: New research suggests that highly dense MgB2 bulks have improved mechanical and superconducting properties September 24th, 2021

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Energy

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Gamechanger for clean hydrogen production, Curtin research finds: Curtin University research has identified a new, cheaper and more efficient electrocatalyst to make green hydrogen from water that could one day open new avenues for large-scale clean energy production September 17th, 2021

Cheaper hydrogen production: Efficient water and urea electrolysis with bimetallic yolk-shell nanoparticles September 10th, 2021

Perovskite solar cells: Interfacial loss mechanisms revealed August 20th, 2021

Solar/Photovoltaic

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

The National Space Society Joins the Progressive Policy Institute in Supporting Rapid Development of Space Solar Power: Orbiting Solar Power Stations Would Help to Save the Environment August 20th, 2021

Harnessing sunlight to fuel the future through covalent organic frameworks: Scientists underscore the potential of a new class of materials to convert sunlight to fuel August 13th, 2021

A universal intercalation strategy for high-stable perovskite photovoltaics: Researchers at Kanazawa University demonstrate that the use of CsI intercalation technology greatly passivate defects, subsequently improve device performance. This technology may encourage a more widesp August 6th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project