Home > Press > Nano/Micromotors for biological and chemical applications
![]() |
Abstract:
Researchers from the ICN2 Nanobioelectronics and Biosensors Group, led by ICREA Research Professor Arben Merkoçi, publish an extensive review in Chemical Reviews about these ultra-small devices with an extraordinary potential.
Nano- and micromotors are ultra-small devices designed to perform selected mechanical movements in response to specific stimuli. These movements include rotation, rolling, shuttling, delivery, contraction or collective behaviour, depending on the design of the motor and its biologically or chemically functionalized components.
These devices are principally characterized according to the type of energy input that they use, as their operating mechanism is strongly related to the energy source. It can be fuel (natural or synthetic), or a physical source (e.g., light, magnetic fields, electric fields, or ultrasonic acoustic waves). Nano- and micromotors are often mimics of natural biological motors.
Researchers from the Nanobioelectronics and Biosensors Group at the Institut Català de Nanociència i Nanotecnologia (ICN2) have recently published an extensive review in Chemical Reviews entitled "Nano/Micromotors in (Bio)chemical Science Applications". The authors of this work, summarizing the state-of-the art knowledge about the design of such devices for biological and chemical applications, are Dr. Maria Guix, Dr. Carmen C. Mayorga-Martinez, and Prof. Arben Merkoçi, ICREA Research Professor and Group Leader at ICN2.
Over the past decade, researchers have shown increased interest in nano- and micromotors. After preliminary works which constituted a proof of concept, research in this area is progressing into specific applications for areas such as biomedicine (e.g., diagnostics), environmental monitoring and remediation, food safety, and security.
The review explains examples of natural biological motors, like those present in the cytoskeleton, the DNA- or RNA-processing enzymes or the bacterial rotary flagellar motors, which have inspired several engineered nano- and micromotors. After that, the authors highlight the latest achievements in synthetic motors, including catalytic nanomotors based on various chemical or biochemical fuels, and discuss the respective limitations of these devices. Their movement depends on an external source (light, magnetic or electric fields, or ultrasonic waves). Finally, the review provides an overview of hybrid motors, which integrate natural biological parts with synthetic components across a range of materials and functionalities.
The article concludes that nano- and micromotors offer extraordinary potential for future biochemical and biomedical applications. Various energy sources have been explored to increase the lifetime of these devices and make them compatible with in vivo applications. The final goal is the remote operation of nano- and micromotors in the human body as fully controllable nanorobots, but right now it still belongs to science fiction literature. The next years of research will be crucial to determine if these dreamt devices will become real.
####
For more information, please click here
Contacts:
Alex Argemi
Communication Manager
Edifici ICN2
08193 Bellaterra (Barcelona) Spain
Teléfono: + 34 93 737 26 49
Fax: + 34 93 737 26 48
Copyright © Institut Catalŕ de Nanocičncia i Nanotec
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links |
| Related News Press |
Chemistry
Projecting light to dispense liquids: A new route to ultra-precise microdroplets January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Molecular Machines
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanotech scientists create world's smallest origami bird March 17th, 2021
Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020
Molecular Nanotechnology
Quantum pumping in molecular junctions August 16th, 2024
Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanomedicine
New molecular technology targets tumors and simultaneously silences two undruggable cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||