Home > Press > Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems
![]() |
a) Trajectory of an enzyme-powered nanomotor prepared with lipase in a closed conformation and without controlled orientation during immobilization on the silicon nanoparticle surface. b) Trajectory of an enzyme-powered nanomotor prepared with lipase in an open conformation and with controlled orientation during immobilization on the silicon nanoparticle Surface. The central panel shows a scanning electron microscopy image of nanomotors like those used in the experiment. CREDIT CNIC/ IBEC |
Abstract:
A study by scientists at the Centro Nacional de Investigaciones Cardiovasculares (CNIC), the Universidad Complutense (UCM), Universidad de Girona (UdG), and the Institute for Bioengineering of Catalonia (IBEC), working together with other international centers, has overcome one of the key hurdles to the use of nanorobots powered by lipases, enzymes that play essential roles in digestion by breaking down fats in foods so that they can be absorbed.
The study was coordinated by Marco Filice of the CNIC Microscopy and Dynamic Imaging Unit--part of the ReDIB Infraestructura Científico Técnica Singular (ICTS)--, professor at Pharmacy Faculty (UCM) and ICREA Research Professor Samuel Sánchez of the IBEC. The article, published in the journal Angewandte Chemie International Edition, describes a tool for modulating motors powered by enzymes, broadening their potential biomedical and environmental applications.
Microorganisms are able to swim through complex environments, respond to their surroundings, and organize themselves autonomously. Inspired by these abilities, over the past 20 years scientists have managed to artificially replicate these tiny swimmers, first at the macro-micro scale and then at the nano scale, finding applications in environmental remediation and biomedicine.
"The speed, load-bearing capacity, and ease of surface functionalization of micro and nanomotors has seen recent research advances convert these devices into promising instruments for solving many biomedical problems. However, a key challenge to the wider use of these nanorobots is choosing an appropriate motor to propel them," explained Sánchez.
Over the past 5 years, the IBEC group has pioneered the use of enzymes to generate the propulsive force for nanomotors. "Bio-catalytic nanomotors use biological enzymes to convert chemical energy into mechanical force, and this approach has sparked great interest in the field, with urease, catalase, and glucose oxidase among the most frequent choices to power these tiny engines," said Sánchez.
The CNIC group is a leader in the structural manipulation and immobilization of lipase enzymes on the surface of different nanomaterials. Lipases make excellent nanomotor components because their catalytic mechanism involves major conformational changes between an open, active form and a closed,
"In this project, we investigated the effect of modulating the catalytic activity of lipase enzymes to propel silicon-based nanoparticles," explained Filice.
In addition to the 3-dimensional conformation of the enzyme, the team also investigated how controlling the orientation of the enzyme during its immobilization on the nanomotor surface affects its catalytic activity and therefore the propulsion of the nanorobots.
The researchers chemically modified the surface of silicon nanoparticles to generate three specific combinations of lipase conformations and orientations during immobilization: 1) open conformation plus controlled orientation; 2) closed conformation plus uncontrolled orientation; 3) a situation intermediate between 1 and 2.
The team analyzed the three types of nanorobot with spectroscopic techniques, assays to assess catalytic parameters related to enzyme activity, Dynamic Molecular simulations (performed by Professor Silvia Osuna's team at UdG), and direct tracking of individual nanomotor trajectories by microscopy techniques. "The results demonstrate that combining an open enzyme conformation with a specific orientation on the nanomotor is critical to achieving controlled propulsion."
####
For more information, please click here
Contacts:
Fátima Lois
34-639-282-477
@CNIC_CARDIO
Copyright © Centro Nacional de Investigaciones Cardiovasculares
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
A new kind of magnetism November 17th, 2023
Imaging
The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023
Observation of left and right at nanoscale with optical force October 6th, 2023
Quantum powers researchers to see the unseen September 8th, 2023
USTC achieved dynamic imaging of interfacial electrochemistry August 11th, 2023
Robotics
Femtosecond laser technique births "dancing microrobots": USTC's breakthrough in multi-material microfabrication August 11th, 2023
Liquid metal sticks to surfaces without a binding agent June 9th, 2023
Possible Futures
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
Molecular Machines
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanotech scientists create world's smallest origami bird March 17th, 2021
Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020
Kavli Lectures: The art of building small and innovating for industrial impact August 7th, 2020
Molecular Nanotechnology
Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanotech scientists create world's smallest origami bird March 17th, 2021
Nanomedicine
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Super-efficient laser light-induced detection of cancer cell-derived nanoparticles: Skipping ultracentrifugation, detection time reduced from hours to minutes! October 6th, 2023
The medicine of the future could be artificial life forms October 6th, 2023
Discoveries
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
A new kind of magnetism November 17th, 2023
Announcements
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
A new kind of magnetism November 17th, 2023
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
A new kind of magnetism November 17th, 2023
Tools
Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023
The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023
Observation of left and right at nanoscale with optical force October 6th, 2023
Nanobiotechnology
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Super-efficient laser light-induced detection of cancer cell-derived nanoparticles: Skipping ultracentrifugation, detection time reduced from hours to minutes! October 6th, 2023
The medicine of the future could be artificial life forms October 6th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |