Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Giant nanomachine aids the immune system: Theoretical chemistry

Lars Schäfer and his team use simulations to clarify the structure and dynamics of proteins. © RUB, Kramer
Lars Schäfer and his team use simulations to clarify the structure and dynamics of proteins. © RUB, Kramer

Abstract:
Cells that are infected by a virus or carry a carcinogenic mutation, for example, produce proteins foreign to the body. Antigenic peptides resulting from the degradation of these exogenous proteins inside the cell are loaded by the peptide-loading complex onto so-called major histocompatibility complex molecules (MHC for short) and presented on the cell surface. There, they are specifically identified by T-killer cells, which ultimately leads to the elimination of the infected cells. This is how our immune system defends us against pathogens.

Giant nanomachine aids the immune system: Theoretical chemistry

Bochum, Germany | Posted on August 28th, 2020

Machine operates with atomic precision

The peptide-loading complex ensures that the MHC molecules are correctly loaded with antigens. "The peptide-loading complex is a biological nanomachine that has to work with atomic precision in order to efficiently protect us against pathogens that cause disease," says Professor Lars Schäfer, Head of the Molecular Simulation research group at the Centre for Theoretical Chemistry at RUB.

In previous studies, other teams successfully determined the structure of the peptide-loading complex using cryo-electron microscopy, but only with a resolution of about 0.6 to 1.0 nanometres, i.e. not in atomic detail. Based on these experimental data, Schäfer's research team in collaboration with Professor Gunnar Schröder from Forschungszentrum Jülich has now succeeded in creating an atomic structure of the peptide-loading complex.

Exploring structure and dynamics

"The experimental structure is impressive. But only with our computer-based methods were we able to extract the maximum information content contained in the experimental data," explains Schröder. The atomic model enabled the researchers to perform detailed molecular dynamics computer simulations of the peptide-loading complex and thus to study not only the structure but also the dynamics of the biological nanomachine.

Since the simulated system is extremely large with its 1.6 million atoms, the computing time at the Leibnitz Supercomputing Centre in Munich aided this task considerably. "Using the high-performance computer, we were able to push into the microsecond time scale in our simulations. This revealed the role of sugar groups bound to the protein for the mechanism of peptide loading, which had previously only been incompletely understood," outlines Dr. Olivier Fisette, postdoc researcher at the Molecular Simulation research group.

Direct intervention in immune processes

The atomic model of the peptide-loading complex now facilitates further studies. For example, some viruses try to cheat our immune system by selectively switching off certain elements of the peptide-loading complex. "One feasible objective we'd like to pursue is the targeted intervention in these processes," concludes Schäfer.

###

Funding

The research was funded by the German Research Foundation as part of the Cluster of Excellence Ruhr Explores Solvation Resolv (EXC 2033).

####

For more information, please click here

Contacts:
Lars Schäfer

49-234-322-1582

@ruhrunibochum

Copyright © Ruhr-Universität Bochum

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original publication

Related News Press

News and information

Graphene key for novel hardware security May 10th, 2021

With a zap of light, system switches objects' colors and patterns: "Programmable matter" technique could enable product designers to churn out prototypes with ease May 6th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Possible Futures

Graphene key for novel hardware security May 10th, 2021

With a zap of light, system switches objects' colors and patterns: "Programmable matter" technique could enable product designers to churn out prototypes with ease May 6th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Molecular Machines

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Kavli Lectures: The art of building small and innovating for industrial impact August 7th, 2020

Polymers self-assembling like links of a chain for innovative materials: Nature just published the research on unprecedented "Self-assembled poly-catenanes" July 16th, 2020

Nanomedicine

World's first fiber-optic ultrasonic imaging probe for future nanoscale disease diagnostics April 30th, 2021

Arrowhead Announces Improvement in Fibrosis after ARO-AAT Treatment in Patients with Alpha-1 Liver Disease April 28th, 2021

Silver ions hurry up, then wait as they disperse: Rice chemists show ions’ staged release from gold-silver nanoparticles could be useful property April 23rd, 2021

Synthetic gelatin-like material mimics lobster underbelly’s stretch and strength: The membrane’s structure could provide a blueprint for robust artificial tissues April 23rd, 2021

Discoveries

Graphene key for novel hardware security May 10th, 2021

With a zap of light, system switches objects' colors and patterns: "Programmable matter" technique could enable product designers to churn out prototypes with ease May 6th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Announcements

Graphene key for novel hardware security May 10th, 2021

With a zap of light, system switches objects' colors and patterns: "Programmable matter" technique could enable product designers to churn out prototypes with ease May 6th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Graphene key for novel hardware security May 10th, 2021

With a zap of light, system switches objects' colors and patterns: "Programmable matter" technique could enable product designers to churn out prototypes with ease May 6th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Nanobiotechnology

Arrowhead Announces Improvement in Fibrosis after ARO-AAT Treatment in Patients with Alpha-1 Liver Disease April 28th, 2021

Synthetic gelatin-like material mimics lobster underbelly’s stretch and strength: The membrane’s structure could provide a blueprint for robust artificial tissues April 23rd, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 Second Quarter Results April 16th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 Second Quarter Results April 16th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project