Home > Press > Functionalized Multiwalled Carbon Nanotubes Used to Remove Mercury from Industrial Wastewater
Abstract:
Iranian researchers from Tarbiat Modarres University produced a sorbent made of multiwalled carbon nanotubes functionalized with sulfuric groups and studied its performance in the removal of mercury from industrial wastewater.
The sorbent has applications in the recovery of wastewater produced by various industries that release hazardous toxic metals in the environment, including petrochemical (containing chloralkali unit), plating and electronic industries as well as battery manufacturing, etc.
The most important objective of the researchers was to introduce a high-performance sorbent to remove mercury from aqueous solutions, even in the presence of other ions existing in industrial wastewater. In order to achieve their goal, the researchers functionalized multiwalled carbon nanotubes with amine and thiol functional groups. Next, they studied and investigated thermodynamic and kinetic parameters of mercury sorption process by the synthesized sorbent in continuous and batch systems by using the existing models.
The research was carried out through the following steps. Firstly, carbon nanotubes were functionalized through five successive stages, including purification, oxidation, amination, melamination and thiolation. Adsorption of mercury ions from aqueous solution was carried out, and parameters effective in the adsorption were studied as well. Finally, the researchers optimized the process of mercury removal from synthetic wastewater and real wastewater obtained from chloralkali industry by using functionalized carbon nanotubes as the sorbent.
The sorbent produced by the researchers can be used for the removal of metallic ions, specifically mercury, from industrial wastewater and also from drinking water. It can also be used as the immobile phase of SPE cartridges in pre-concentration and measurement of very small amounts of mercury and methyl-mercury ions in aqueous solutions.
Results of the research have been published in details in Chemical Engineering Journal, vol. 237, October 2014, pp. 217-228.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings/Nanosheets
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Environment
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
Water
Taking salt out of the water equation October 7th, 2022
Industrial
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
Quantum interference in molecule-surface collisions February 28th, 2025
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||