Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes

Schematic depiction of the quantum mechanical nature of water molecule interactions: excitation by a laser, followed by contraction of the hydrogen bond, then release of the energy (thermalization).
CREDIT
Image courtesy of SLAC National Accelerator Laboratory.
Schematic depiction of the quantum mechanical nature of water molecule interactions: excitation by a laser, followed by contraction of the hydrogen bond, then release of the energy (thermalization). CREDIT Image courtesy of SLAC National Accelerator Laboratory.

Abstract:
The Science
Water is the most abundant liquid in nature, but it’s also one of the least understood. Water has unusual properties. For example, most materials get denser when they get colder, but water is densest a few degrees above freezing. That’s why ice floats. Scientists suggest that water’s so-called “proton quantum effect” may be at the heart of many of water’s strange properties. This experiment with ultrafast electron diffraction marks the first time that scientists have directly observed this quantum effect in water. Scientists observed how the hydrogen atoms in water molecules tug and push neighboring molecules when water is excited with laser light. The results reveal quantum effects that could underpin key aspects of the microscopic origin of water’s strange properties. This could lead to a better understanding of how water helps proteins function in living organisms

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes

Washington, DC | Posted on July 8th, 2022

The Impact
Each water molecule contains one oxygen and two hydrogen atoms. Water molecules are held together by a web of hydrogen bonds. In these webs, hydrogen and oxygen link in two ways. The hydrogen protons that are covalently bound (bonds involving atoms that share electrons) to oxygen in one molecule are also weakly attracted electrically to another oxygen in neighboring molecules. This intricate network drives many of water’s strange properties. Researchers used short pulses of high-energy electrons to observe these interactions. This quantum effect could be the missing link in theoretical models describing the strange properties of water. It could also help to develop renewable energy methods using polymer membranes that transport hydrogen.

Summary
Many strange properties of liquid water, such as its density, which is greatest at 4 degrees Celsius and causes ice to float, originate from water’s well-connected hydrogen bond network. A complete unveiling of the intermolecular dynamics of water requires direct time- and structure-resolved measurements. Neither X-rays nor neutron scattering can be used to study water’s hydrogen bond structure dynamics due to the lack of scattering power (X-rays) or time resolution (neutrons). This research, by a team that included SLAC National Accelerator Laboratory, Stanford University, and Stockholm University, employed the MeV-UED instrument at the Linac Coherent Light Source (LCLS), a Department of Energy (DOE) user facility at SLAC. The MeV-UED instrument (for Megaelectronvolt Ultrafast Electron Diffraction) is a high-speed “electron camera,” a unique tool capable of investigating water’s hydrogen bond structure dynamics. The experimental results reveal unique effects, such as how the contraction of the hydrogen bond emerges upon laser excitation. Revealing key aspects of the microscopic origin of water’s strange properties could lead to a better understanding of how water helps proteins function in living organisms. Understanding the quantum behavior also could be important in modeling the many critical reactions that involve hydrogen, including carbon-hydrogen bond activation, water oxidation, carbon dioxide reduction, and acid-base chemistry critical for energy-related phenomena.



Funding
Development and operation of the Ultrafast Electron Diffraction (UED) instrument and the research reported here were supported by DOE’s Office of Science, Basic Energy Sciences (Chemical Sciences, Geosciences, and Biosciences Division, Materials Sciences and Engineering Division, and Scientific User Facilities Division), and Fusion Energy Sciences as well as Stanford University fellowships. The UED is part of the Linac Coherent Light Source (LCLS), a DOE Office of Science user facility at SLAC National Accelerator Laboratory.

####

For more information, please click here

Contacts:
Michael Church
DOE/US Department of Energy

Office: 2028416299

Copyright © DOE/US Department of Energy

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Quantum Physics

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

Chemistry

Researchers create a new 3D extra-large pore zeolite that opens a new path to the decontamination of water and gas: A team of scientists with the participation of the CSIC develops an extra-large pore silica zeolite from a silicate chain January 20th, 2023

Dual-site collaboration boosts electrochemical nitrogen reduction on Ru-S-C single-atom catalyst January 6th, 2023

Quantum chemistry

Dawn of solid-state quantum networks: Researchers demonstrated high-visibility quantum interference between two independent semiconductor quantum dots — an important step toward scalable quantum networks January 6th, 2023

New quantum computing architecture could be used to connect large-scale devices: Researchers have demonstrated directional photon emission, the first step toward extensible quantum interconnects January 6th, 2023

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Department of Energy announces $9.1 million for research on quantum information science and nuclear physics: Projects span the development of quantum computing, algorithms, simulators, superconducting qubits, and quantum sensors for advancing nuclear physics January 27th, 2023

UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023

Vertical electrochemical transistor pushes wearable electronics forward: Biomedical sensing is one application of efficient, low-cost transistors January 20th, 2023

Possible Futures

One of the causes of aggressive liver cancer discovered: a 'molecular staple' that helps repair broken: DNA Researchers describe a new DNA repair mechanism that hinders cancer treatment January 27th, 2023

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023

UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023

Discoveries

One of the causes of aggressive liver cancer discovered: a 'molecular staple' that helps repair broken: DNA Researchers describe a new DNA repair mechanism that hinders cancer treatment January 27th, 2023

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Announcements

UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Department of Energy announces $9.1 million for research on quantum information science and nuclear physics: Projects span the development of quantum computing, algorithms, simulators, superconducting qubits, and quantum sensors for advancing nuclear physics January 27th, 2023

Water

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists offer solutions for risky tap water June 17th, 2022

UBCO researchers change the game when it comes to activity tracking: Flexible, highly sensitive motion device created by extrusion printing June 17th, 2022

Quantum nanoscience

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Department of Energy announces $9.1 million for research on quantum information science and nuclear physics: Projects span the development of quantum computing, algorithms, simulators, superconducting qubits, and quantum sensors for advancing nuclear physics January 27th, 2023

Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project