Home > Press > Researchers Devise New Means For Creating Elastic Conductors
The buckled nanotubes look like squiggly lines on a flat surface. |
Abstract:
Researchers from North Carolina State University have developed a new method for creating elastic conductors made of carbon nanotubes, which will contribute to large-scale production of the material for use in a new generation of elastic electronic devices.
"We're optimistic that this new approach could lead to large-scale production of stretchable conductors, which would then expedite research and development of elastic electronic devices," says Dr. Yong Zhu, an assistant professor of mechanical and aerospace engineering at NC State, and lead author of a paper describing the new technique.
Stretchable electronic devices would be both more resilient and able to conform to various shapes. Potential applications include devices that can be incorporated into clothing, implantable medical devices, and sensors that can be stretched over unmanned aerial vehicles.
To develop these stretchable electronics, one needs to create conductors that are elastic and will reliably transmit electric signals regardless of whether they are being stretched.
One way of making conductive materials more elastic is to "buckle" them. Zhu's new method buckles carbon nanotubes on the plane of the substrate. Think of the nanotubes as forming squiggly lines on a piece of paper, rather than an accordion shape that zigs up and down with only the bottom parts touching the sheet of paper. Zhu's team used carbon nanotubes because they are sturdy, stable, excellent conductors and can be aligned into ribbons.
The new process begins by placing aligned carbon nanotubes on an elastic substrate using a transfer printing process. The substrate is then stretched, which separates the nanotubes while maintaining their parallel alignment.
Strikingly, when the substrate is relaxed, the nanotubes do not return to their original positions. Instead, the nanotubes buckle - creating what looks like a collection of parallel squiggly lines on a flat surface.
The carbon nanotubes are now elastic - they can be stretched - but they have retained their electrical properties.
The key benefit of this new method is that it will make manufacturing of elastic conductors significantly more efficient, because the carbon nanotubes can be applied before the substrate is stretched. This is compatible with existing manufacturing processes. "For example, roll-to-roll printing techniques could be adapted to take advantage of our new method," Zhu says.
A paper describing the new approach, "Buckling of Aligned Carbon Nanotubes as Stretchable Conductors: A New Manufacturing Strategy," was published online Jan. 23 in Advanced Materials. The paper was co-authored by Feng Xu, a Ph.D. student at NC State. The research was funded by the National Science Foundation.
In another new paper, Zhu's team has demonstrated for the first time that carbon nanotubes can be buckled using a technique in which the elastic substrate is stretched before the nanotubes are applied. The substrate is then relaxed, forcing the nanotubes to buckle out of plane. The nanotubes form a ribbon that curves up and down like the bellows of an accordion. This second technique has been used before with other materials. This second paper, "Wavy Ribbons of Carbon Nanotubes for Stretchable Conductors," was published Jan. 19 in Advanced Functional Materials.
####
For more information, please click here
Contacts:
Matt Shipman
News Services
919.515.6386
Dr. Yong Zhu
919.513.7735
Copyright © North Carolina State University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Download -“Wavy Ribbons of Carbon Nanotubes for Stretchable Conductors.”
Related News Press |
News and information
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Flexible Electronics
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
CityU awarded invention: Soft, ultrathin photonic material cools down wearable electronic devices June 30th, 2023
Liquid metal sticks to surfaces without a binding agent June 9th, 2023
Chip Technology
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
How cells repair DNA’s protective barrier: a pathway to address a rare genetic disorder characterized by rapid aging in children December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024
Announcements
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Textiles/Clothing
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022
Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020
Aerospace/Space
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024
Bridging light and electrons January 12th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||