Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphite oxide at high pressure opens a road to new amazing nano-materials

Abstract:
New results by scientists at Umeå University show that not only water but also alcohol solvents can be inserted to expand the structure of graphite oxide under high pressure conditions. The information is helpful in the search for new methods to develop amazing materials that could be used for instance in nanoelectronics and for energy storage.

Graphite oxide at high pressure opens a road to new amazing nano-materials

Sweden | Posted on December 21st, 2009

Graphite oxide has a layered structure like common graphite, used in pencils, but with increased distance between the layers. It also has a unique ability to incorporate various solvents between the layers. Even after 150 years of studies the structure of graphite oxide remains to be somewhat of a mystery.

The interest in graphite oxide has recently been heated up due to the possibility to convert it to graphene - a sheet of carbon only one atom thick. Graphene has the potential to serve as the basis of an entirely new class of materials, which are ultra-strong yet lightweight. The extraordinary materials could for instance be used for nanoelectronics, in solar cells, for preparation of exceptionally strong paper, and to improve fuel efficiency in cars and airplanes. Graphite oxide can be converted into graphene by moderate heating and even by a flash from a usual camera. An alternative method is chemical treatment of graphite oxide dispersed in solution. To make conversion of graphite oxide to graphene more efficient researchers need to know detailed information about the structure of graphite oxide, including its structure in solution at various conditions.

"We have found a range of new phenomena for graphite oxide at high pressure conditions. This gives additional possibilities to develop new composite graphene-related materials using high pressure treatment and to modify graphite oxide chemically. Clearly, we can insert larger molecules between graphite oxide layers due to the expansion of the lattice at high pressure conditions. Also, when layers of graphite oxide are separated by several layers of solvent it is more likely that they will stay separated after reduction thus preventing formation of graphite and assisting the synthesis of graphene", says Dr Alexandr Talyzin.

Last year an international team of scientists from Sweden, Hungary, Germany and France reported an unusual property of graphite oxide: the structure expanded under high pressure conditions due to insertion of liquid water. The new study lead by scientists from Umeå University and performed at the Swiss-Norwegian beamline (ESRF, Grenoble) reports that not only water but also alcohol solvents (methanol and ethanol) can be inserted between oxidized graphene layers under high pressure conditions.

"However, it happens in a very different way compared to when water is inserted under high pressure. Alcohol is inserted in a single step as a complete layer in the structure at a certain pressure while water insertion occurs gradually, without clear steps", says dr Alexandr Talyzin.
Experiments with methanol and water mixtures proved that water between the layers of graphite oxide is in the liquid state and remains to be liquid even when bulk water solidifies around grains of the material.

"The extra amount of water and methanol is also released from the structure when the pressure decreases, which results in a unique structural "breathing" effect. It is also remarkable that for ethanol the high pressure expanded structure was observed even after full release of pressure", says Dr Alexandr Talyzin.

The experiments were performed using diamond anvil cells, which allow to squeeze tiny samples up to very high pressures and to study phase transformations using X-ray diffraction through diamonds.
The new results are published in J. Am. Chem. Soc by Alexandr V. Talyzin, Bertil Sundqvist, (Sweden), Tamás Szabó, Imre Dekany (Hungary) and Vladimir Dmitriev (France).

pubs.acs.org/doi/full/10.1021/ja907492s

####

About Umeå University
Umeå University was founded in 1965 and is Sweden's fifth oldest university. Today, we have a strong international and multicultural presence with students, teachers and researchers from all over the world. Our main campus - with its 29,000 students and 4,000 employees - is alive with enthusiasm, creativity and fresh ideas.

We constantly strive towards making it one of Scandinavia's best environments for study and research that meets the challenges of an ever-increasing global society.

For more information, please click here

Contacts:
Dr Alexandr Talyzin, Department of Physics, Umeå University,
Phone: +46 (0)90-786 63 20

Copyright © Umeå University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Automotive/Transportation

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Aerospace/Space

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project