Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > EU setting the future in motion

Abstract:
Electric vehicles are the future and researchers are working on developing such cars to fuel technology and protect the environment. Rising to meet this challenge head on is the E3Car ('Energy efficient electrical car') project, funded in part by the EU and ENIAC (the European Nanoelectronics Initiative Advisory Council). Its objective is the development of nanoelectronics technologies, specifically for electrical and hybrid vehicles. E3Car will boost the efficiency of electrical cars using advanced semiconductor components. The results will help Europe gain a solid foothold on such technologies.

EU setting the future in motion

EU | Posted on November 4th, 2009

E3Car aims to develop nanoelectronics technologies, devices, circuits, architectures and modules for electrical and hybrid cars, and present these modules in finalised systems. Led by the German company Infineon Technologies AG, the 33-member E3Car consortium is composed of industry and research partners from 12 European countries including the Czech Republic, Finland, Germany, Italy and Norway.

Due to end in 2011, the E3Car project aims to contribute to Europe's goal of fuelling research in electronic components for electric vehicle power consumption. The consortium is targeting research on semiconductor components and power modules with the capacity to control the supply and distribution of power in these innovative vehicles.

The partners said electrical vehicle efficiency will be improved thanks to the use of advanced semiconductor components in four key areas: power conversion, power management, power distribution network, and smart dynamic monitoring.

By increasing efficiency by more than one third (35%), the E3Car partners believe electric vehicles will be able to travel further using a battery unit that is the same size as the current battery baseline.

The researchers are focusing on boosting the vehicle's travel range for each battery charge, and on integrating components to make the battery, charge unit and power distribution network lighter, smaller and more economical. The partners also plan to increase the efficiency of the power converter in order to guarantee that as much battery charge as possible is used to 'drive' the vehicle instead of being lost through heat dissipation.

Total funding for the project stands at around EUR 44 million, with half of this stemming from the 33 research and industry partners, and the remaining from the EU, ENIAC and 11 funding bodies in Austria, Belgium, the Czech Republic, Finland, France, Germany, Ireland, Italy, the Netherlands, Norway and Spain.

Ultimately, the work carried out by the E3Car partners will fuel the advancement of technologies for environmentally friendly and energy-efficient vehicles. The project will help the EU meet its targets for developing green technologies, curbing carbon emissions and reducing fossil fuel liquids consumption.

####

For more information, please click here

Copyright © European Commission

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Govt.-Legislation/Regulation/Funding/Policy

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project