Home > News > Viral Manufacturing: Building Nanomachines With Viruses
February 17th, 2007
Viral Manufacturing: Building Nanomachines With Viruses
Abstract:
The goal of nanofabrication is to make tiny machines build themselves using molecules they grab from their surroundings. It's easy to dismiss the concept as science fiction — or hype. Until you hear what's been going on in the lab of MIT materials scientist Angela Belcher, a star in nanotechnology circles.
Working with colleagues Paula Hammond and Yet-Ming Chiang, Belcher genetically altered a virus, the M-13 bacteriophage, inducing it to grab a pair of conductive metals — cobalt oxide and gold — from a solution. As the viruses rearrange themselves, they form highly aligned organic nanowires that can be used as a lithium-ion battery electrode — one so densely packed it can store two or three times the energy of conventional electrodes of the same size and weight. So far, the team has grown an anode. The next steps-which could be completed in two years-will be to grow a cathode, and to perfect the Saran Wrap-thin polymer electrolyte that separates the electrodes.
Source:
popularmechanics.com
| Related News Press |
NEMS
IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018
UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018
Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018
One string to rule them all April 17th, 2018
Molecular Machines
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanotech scientists create world's smallest origami bird March 17th, 2021
Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||