Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > First measurement of electron energy distributions, could enable sustainable energy technologies

Abstract:
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the U.K. have figured out a way to measure how many "hot charge carriers"--for example, electrons with extra energy--are present in a metal nanostructure.

First measurement of electron energy distributions, could enable sustainable energy technologies

Ann Arbor, MI | Posted on June 5th, 2020

"For example, if you wanted to employ light to split water into hydrogen and oxygen, you can use hot charge carriers because electrons that are more energetic can more readily participate in the reaction and drive the reaction faster. That's one possible use for hot carriers in energy conversion or storage applications," said Edgar Meyhofer, a professor of mechanical engineering at U-M, who co-led the research.

Vladimir Shalaev, a professor of electrical and computer engineering, led the contribution from Purdue. The findings also confirm that thinner metals are more efficient at using light for generating hot charge carriers. Light can drive the motion of electrons on the surfaces of materials such as gold and silver, creating waves known as surface plasmons. These waves, in turn, can generate hot charge carriers.

The researchers compared the usual distribution of charge carrier energies to air at room temperature: The molecules in air do not all have the same energy--their average energy is reflected by the temperature. The energies of negatively-charged electrons and positively-charged holes ordinarily follow similar distributions within a material. But in materials that support surface plasmons, light can be used to give extra energy to some charge carriers as though the material were much hotter--more than 2,000 degrees Fahrenheit.

The team created the hot charge carriers by shining laser light onto a gold film just 13 nanometers thick, or hundred or so gold atoms thick, with tiny ridges spaced so that they would resonate with the laser light and generate the surface plasmon waves. Then they measured the energies of the charge carriers by drawing them through gatekeeper molecules into a gold electrode--the tip of a scanning tunneling microscope.

The key to the experiment is those gatekeeper molecules, which were synthesized by the Liverpool team as well as a private company. The molecules allow only charge carriers with certain energies to pass. By repeating the experiments with different molecules, the researchers figured out the energy distribution of the charge carriers.

"Electrons can be thought of as cars running at different speeds on a highway. The molecule acts like an operator--it only allows cars travelling at a certain speed to pass through," said Kun Wang, a postdoctoral fellow in Meyhofer's group.

The researchers also compare it to a prism that separates the spectrum of electron energies rather than the colors in light.

Wang spent more than 18 months working with Harsha Reddy, a Ph.D. student in electrical and computer engineering at Purdue, on how to make this idea work.

"This idea of molecular filters was something no one else in the field has realized in the past," said Reddy, who works in Shalaev's lab.

Once they had developed a successful method, Wang and Reddy repeated the experiments with a second gold structure, this one about 6 nanometers thick. This structure generated hot charge carriers more efficiently than the 13 nanometer version.

"This multidisciplinary basic research effort sheds light on a unique way to measure the energy of charge carriers. These results are expected to play a crucial role in developing future applications in energy conversion and photocatalysis and photodetectors, for instance, that are of great interest to the Department of Defense," said Chakrapani Varanasi, program manager of the team's Multidisciplinary University Research Initiative funded by the Army Research Office.

With the method now demonstrated, the team believes that others can use it to explore and optimize nanostructures. This is important in applications such as converting sunlight to chemical energy because the number of hot charge carriers affects how well a catalyst can direct light energy toward a chemical reaction.

####

For more information, please click here

Contacts:
Nicole Moore


@umich

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The study is published in the journal Science. Additional funding came from the Department of Energy and the Office of Naval Research. Seed funding from the U-M Department of Mechanical Engineering supported complementary calculations.

Related News Press

News and information

Engineers produce a fisheye lens that's completely flat: The single piece of glass produces crisp panoramic images September 22nd, 2020

New design principles for spin-based quantum materials: Criteria for designing targeted quantum materials could support Internet of Things devices and other resource-intensive technologies September 20th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Shedding Light on the Development of Efficient Blue-Emitting Semiconductors September 18th, 2020

Imaging

Engineers produce a fisheye lens that's completely flat: The single piece of glass produces crisp panoramic images September 22nd, 2020

Who stole the light? Self-induced ultrafast demagnetization limits the amount of light diffracted from magnetic samples at soft x-ray energies September 18th, 2020

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Get diamonds, take temperature: Quantum thermometer using nanodiamonds senses a 'fever' in tiny worms C. elegans September 11th, 2020

Boundaries no barrier for thermoelectricity: Rice researchers find potentially useful electrical phenomenon in gold nanowires September 8th, 2020

Chemistry

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Observation charge accumulation at nanocavity on plasmonic photocatalyst August 28th, 2020

Advance in programmable synthetic materials: Reading sequence of metal atoms in MOFs allows encoding of multiple chemical functions August 11th, 2020

Brain-Computer Interfaces

Gentle probes could enable massive brain data collection: National Institutes of Health backing Rice’s Chong Xie to refine flexible nanoelectronics thread September 14th, 2020

Cancer

Dipanjan Pan demonstrates new method to produce gold nanoparticles in cancer cells: Possible applications in x-ray imaging, cancer treatment September 11th, 2020

Coatings

Clear, conductive coating could protect advanced solar cells, touch screens: New material should be relatively easy to produce at an industrial scale, researchers say November 22nd, 2019

Crystallography

How to trick electrons to see the hidden face of crystals: Researchers try a trick for complete 3D analysis of submicron crystals August 3rd, 2019

3-D-printed jars in ball-milling experiments June 29th, 2017

Novel nozzle saves crystals: Double flow concept widens spectrum for protein crystallography March 17th, 2017

Biophysics

Promising news from biomedicine: DNA origami more resilient than previously understood June 4th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Blog sites

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Peter Diamandis Thinks Nanotech Will Interface With Human Minds September 1st, 2016

Graphene-Enabled Paper Makes for Flexible Display August 1st, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

Biomimetics

Nanoribbons in solutions mimic nature: Rice University scientists test graphene ribbons' abilities to integrate with biological systems August 15th, 2016

Consulting

Lucintel identifies and prioritizes opportunities for alumina trihydrate (ATH) fillers in the global composites industry August 3rd, 2016

Haydale Wins Major Research Grants September 26th, 2015

Possible Futures

Engineers produce a fisheye lens that's completely flat: The single piece of glass produces crisp panoramic images September 22nd, 2020

New design principles for spin-based quantum materials: Criteria for designing targeted quantum materials could support Internet of Things devices and other resource-intensive technologies September 20th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Chip Technology

New design principles for spin-based quantum materials: Criteria for designing targeted quantum materials could support Internet of Things devices and other resource-intensive technologies September 20th, 2020

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

FEFU scientists are paving way for future tiny electronics and gadgets August 28th, 2020

Announcements

Engineers produce a fisheye lens that's completely flat: The single piece of glass produces crisp panoramic images September 22nd, 2020

New design principles for spin-based quantum materials: Criteria for designing targeted quantum materials could support Internet of Things devices and other resource-intensive technologies September 20th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Engineers produce a fisheye lens that's completely flat: The single piece of glass produces crisp panoramic images September 22nd, 2020

New design principles for spin-based quantum materials: Criteria for designing targeted quantum materials could support Internet of Things devices and other resource-intensive technologies September 20th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Tools

Engineers produce a fisheye lens that's completely flat: The single piece of glass produces crisp panoramic images September 22nd, 2020

Who stole the light? Self-induced ultrafast demagnetization limits the amount of light diffracted from magnetic samples at soft x-ray energies September 18th, 2020

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Get diamonds, take temperature: Quantum thermometer using nanodiamonds senses a 'fever' in tiny worms C. elegans September 11th, 2020

Appointments/Promotions/New hires/Resignations/Deaths

Erick Carreira to lead the Journal of the American Chemical Society September 4th, 2020

National Space Society Celebrates the Life of Hugh Downs: Long-serving chair of the NSS Board of Governors and recipient of NSS Lifetime Achievement and Distinguished Service Awards passes at age 99 July 3rd, 2020

Nexeon Appoints New Chairman May 18th, 2020

Arrowhead Pharmaceuticals Announces Retirement of COO Bruce Given May 1st, 2020

Energy

New design principles for spin-based quantum materials: Criteria for designing targeted quantum materials could support Internet of Things devices and other resource-intensive technologies September 20th, 2020

Shedding Light on the Development of Efficient Blue-Emitting Semiconductors September 18th, 2020

An improved wearable, stretchable gas sensor using nanocomposites August 28th, 2020

UCF researchers generate attosecond light from industrial laser: The ultrafast measurement of the motion of electrons inside atoms, molecules and solids at their natural time scale is known as attosecond science and could have important implications in power generation, chemical- August 25th, 2020

Automotive/Transportation

Ambient light alters refraction in 2D material: Rice researchers find effect that could aid 3D displays, virtual reality, self-driving vehicles September 2nd, 2020

Nano-diamond self-charging batteries could disrupt energy as we know it August 25th, 2020

Rescue operations become faster thanks to graphene nanotubes August 20th, 2020

New cobalt-free lithium-ion battery reduces costs without sacrificing performance July 17th, 2020

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Fast calculation dials in better batteries: Analytical model from Rice University helps researchers fine-tune battery performance September 16th, 2020

Boundaries no barrier for thermoelectricity: Rice researchers find potentially useful electrical phenomenon in gold nanowires September 8th, 2020

Battery-free Game Boy runs forever: Button pressing and solar energy power the retro gaming device September 4th, 2020

Nano-diamond self-charging batteries could disrupt energy as we know it August 25th, 2020

Artificial Intelligence

New super-resolution method reveals fine details without constantly needing to zoom in August 12th, 2020

Machine learning reveals recipe for building artificial proteins July 24th, 2020

Teaching physics to neural networks removes 'chaos blindness' June 19th, 2020

Engineers put tens of thousands of artificial brain synapses on a single chip: The design could advance the development of small, portable AI devices June 8th, 2020

Dental

Gas storage method could help next-generation clean energy vehicles: Tremendous amounts of hydrogen and methane can be stored in nanoscopic pores April 17th, 2020

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

Dental plaque is no match for catalytic nanoparticles: Twice-daily rinses of FDA-approved nanoparticles broke apart oral biofilms and prevented tooth decay in a study led by Penn researchers August 8th, 2018

Detecting the birth and death of a phonon June 7th, 2018

Construction

Discovery of disordered nanolayers in intermetallic alloys: Resolving alloys' strength-ductility trade-off and thermal instability July 24th, 2020

Sustainable structural material for plastic substitute May 11th, 2020

Scientists came up with nanoconcrete for casting under negative temperature conditions March 6th, 2020

The first highway trials show that nanotube-reinforced asphalt concrete prevents cracks and ruts January 16th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project