Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > First measurement of electron energy distributions, could enable sustainable energy technologies

Abstract:
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the U.K. have figured out a way to measure how many "hot charge carriers"--for example, electrons with extra energy--are present in a metal nanostructure.

First measurement of electron energy distributions, could enable sustainable energy technologies

Ann Arbor, MI | Posted on June 5th, 2020

"For example, if you wanted to employ light to split water into hydrogen and oxygen, you can use hot charge carriers because electrons that are more energetic can more readily participate in the reaction and drive the reaction faster. That's one possible use for hot carriers in energy conversion or storage applications," said Edgar Meyhofer, a professor of mechanical engineering at U-M, who co-led the research.

Vladimir Shalaev, a professor of electrical and computer engineering, led the contribution from Purdue. The findings also confirm that thinner metals are more efficient at using light for generating hot charge carriers. Light can drive the motion of electrons on the surfaces of materials such as gold and silver, creating waves known as surface plasmons. These waves, in turn, can generate hot charge carriers.

The researchers compared the usual distribution of charge carrier energies to air at room temperature: The molecules in air do not all have the same energy--their average energy is reflected by the temperature. The energies of negatively-charged electrons and positively-charged holes ordinarily follow similar distributions within a material. But in materials that support surface plasmons, light can be used to give extra energy to some charge carriers as though the material were much hotter--more than 2,000 degrees Fahrenheit.

The team created the hot charge carriers by shining laser light onto a gold film just 13 nanometers thick, or hundred or so gold atoms thick, with tiny ridges spaced so that they would resonate with the laser light and generate the surface plasmon waves. Then they measured the energies of the charge carriers by drawing them through gatekeeper molecules into a gold electrode--the tip of a scanning tunneling microscope.

The key to the experiment is those gatekeeper molecules, which were synthesized by the Liverpool team as well as a private company. The molecules allow only charge carriers with certain energies to pass. By repeating the experiments with different molecules, the researchers figured out the energy distribution of the charge carriers.

"Electrons can be thought of as cars running at different speeds on a highway. The molecule acts like an operator--it only allows cars travelling at a certain speed to pass through," said Kun Wang, a postdoctoral fellow in Meyhofer's group.

The researchers also compare it to a prism that separates the spectrum of electron energies rather than the colors in light.

Wang spent more than 18 months working with Harsha Reddy, a Ph.D. student in electrical and computer engineering at Purdue, on how to make this idea work.

"This idea of molecular filters was something no one else in the field has realized in the past," said Reddy, who works in Shalaev's lab.

Once they had developed a successful method, Wang and Reddy repeated the experiments with a second gold structure, this one about 6 nanometers thick. This structure generated hot charge carriers more efficiently than the 13 nanometer version.

"This multidisciplinary basic research effort sheds light on a unique way to measure the energy of charge carriers. These results are expected to play a crucial role in developing future applications in energy conversion and photocatalysis and photodetectors, for instance, that are of great interest to the Department of Defense," said Chakrapani Varanasi, program manager of the team's Multidisciplinary University Research Initiative funded by the Army Research Office.

With the method now demonstrated, the team believes that others can use it to explore and optimize nanostructures. This is important in applications such as converting sunlight to chemical energy because the number of hot charge carriers affects how well a catalyst can direct light energy toward a chemical reaction.

####

For more information, please click here

Contacts:
Nicole Moore


@umich

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The study is published in the journal Science. Additional funding came from the Department of Energy and the Office of Naval Research. Seed funding from the U-M Department of Mechanical Engineering supported complementary calculations.

Related News Press

News and information

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

How photoblueing disturbs microscopy February 26th, 2021

Changing the silkworm's diet to spin stronger silk February 26th, 2021

From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses February 26th, 2021

Imaging

How photoblueing disturbs microscopy February 26th, 2021

High-speed holographic fluorescence microscopy system with submicron resolution: The group has realized a scanless 3D imaging system and an algorithm for high-speed measurement January 29th, 2021

Adaptive optics with cascading corrective elements: A cascaded dual deformable phase plate wavefront modulator enables direct AO integration with existing microscopes--doubling the aberration correction range and greatly improving image quality January 22nd, 2021

Cancer

Nanothermometry to improve anticancer strategies February 10th, 2021

Nanoparticle drug delivery technique shows promise for treating pancreatic cancer: Method may also work for breast, prostate, ovarian cancer January 29th, 2021

Chemistry

Boosting the efficiency of carbon capture and conversion systems: New design could speed reaction rates in electrochemical systems for pulling carbon out of power plant emissions January 25th, 2021

Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021

Controlling chemical catalysts with sculpted light January 15th, 2021

Brain-Computer Interfaces

Gentle probes could enable massive brain data collection: National Institutes of Health backing Rice’s Chong Xie to refine flexible nanoelectronics thread September 14th, 2020

The concept of creating «brain-on-chip» revealed: A team of scientists is working to create brain-like memristive systems providing the highest degree of adaptability for implementing compact and efficient neural interfaces, new-generation robotics, artificial intelligence, perso May 29th, 2020

Mind over body: The search for stronger brain-computer interfaces April 20th, 2020

The Human Brain/Cloud Interface Research Paper has been Published! February 22nd, 2020

Coatings

Clear, conductive coating could protect advanced solar cells, touch screens: New material should be relatively easy to produce at an industrial scale, researchers say November 22nd, 2019

Crystallography

How to trick electrons to see the hidden face of crystals: Researchers try a trick for complete 3D analysis of submicron crystals August 3rd, 2019

3-D-printed jars in ball-milling experiments June 29th, 2017

Novel nozzle saves crystals: Double flow concept widens spectrum for protein crystallography March 17th, 2017

Biophysics

Promising news from biomedicine: DNA origami more resilient than previously understood June 4th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Blog sites

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Peter Diamandis Thinks Nanotech Will Interface With Human Minds September 1st, 2016

Graphene-Enabled Paper Makes for Flexible Display August 1st, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

Biomimetics

Nanoribbons in solutions mimic nature: Rice University scientists test graphene ribbons' abilities to integrate with biological systems August 15th, 2016

Consulting

Lucintel identifies and prioritizes opportunities for alumina trihydrate (ATH) fillers in the global composites industry August 3rd, 2016

Haydale Wins Major Research Grants September 26th, 2015

Possible Futures

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021

How photoblueing disturbs microscopy February 26th, 2021

Changing the silkworm's diet to spin stronger silk February 26th, 2021

Chip Technology

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Engineering the boundary between 2D and 3D materials: Cutting-edge microscope helps reveal ways to control the electronic properties of atomically thin materials February 26th, 2021

CEA-Leti & Dolphin Design Report FD-SOI Breakthrough that Boosts Operating Frequency by 450% and Reduces Power Consumption by 30%: Joint Paper Presented at ISSCC 2021 Shows How New Adaptive Back-Biasing Technique Overcomes Integration Limits in Chip Design Flows February 23rd, 2021

Blueprint for fault-tolerant qubits: Scientists at Forschungszentrum Jülich and RWTH Aachen University have designed a circuit for quantum computers which is naturally protected against common errors February 19th, 2021

Announcements

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses February 26th, 2021

Nanoparticles help untangle Alzheimer's disease amyloid beta plaques: New research shows that the protein that causes Alzheimer's disease's hallmark brain plaques clings to certain bowl-shaped nanoparticles, allowing researchers to better understand the disease and potentially pr February 26th, 2021

Researchers improve efficiency of next-generation solar cell material: Reducing internal losses could pave the way to low-cost perovskite-based photovoltaics that match silicon cells’ output February 26th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021

How photoblueing disturbs microscopy February 26th, 2021

Changing the silkworm's diet to spin stronger silk February 26th, 2021

Tools

From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses February 26th, 2021

Engineering the boundary between 2D and 3D materials: Cutting-edge microscope helps reveal ways to control the electronic properties of atomically thin materials February 26th, 2021

Novel Flexible Terahertz Camera Can Inspect Objects with Diverse Shapes February 17th, 2021

CEA Is the First Research Center to Acquire A Cryogenic Prober for Testing Quantum Bits February 10th, 2021

Appointments/Promotions/New hires/Resignations/Deaths

The National Space Society Remembers Ben Bova : NSS Mourns the Loss of a Visionary NSS Leader December 2nd, 2020

Erick Carreira to lead the Journal of the American Chemical Society September 4th, 2020

National Space Society Celebrates the Life of Hugh Downs: Long-serving chair of the NSS Board of Governors and recipient of NSS Lifetime Achievement and Distinguished Service Awards passes at age 99 July 3rd, 2020

Nexeon Appoints New Chairman May 18th, 2020

Energy

Researchers improve efficiency of next-generation solar cell material: Reducing internal losses could pave the way to low-cost perovskite-based photovoltaics that match silicon cells’ output February 26th, 2021

Producing more sustainable hydrogen with composite polymer dots UPPSALA UNIVERSITY February 12th, 2021

Islands without structure inside metal alloys could lead to tougher materials: These high-entropy alloys could lead to better technologies in transportation, energy and denfense January 29th, 2021

Squeezing a rock-star material could make it stable enough for solar cells: A promising lead halide perovskite is great at converting sunlight to electricity, but it breaks down at room temperature; now scientists have discovered how to stabilize it with pressure from a diamond a January 22nd, 2021

Automotive/Transportation

Islands without structure inside metal alloys could lead to tougher materials: These high-entropy alloys could lead to better technologies in transportation, energy and denfense January 29th, 2021

Scientists suggested a method to improve performance of methanol fuel cells December 25th, 2020

New class of cobalt-free cathodes could enhance energy density of next-gen lithium-ion batteries December 21st, 2020

Safe space: improving the "clean" methanol fuel cells using a protective carbon shell: Scientists encapsulate catalyst in a protective molecular sieve that selectively prevents undesired reactions in methanol fuel cells December 4th, 2020

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Atomic nuclei in the quantum swing: The extremely precise control of nuclear excitations opens up possibilities of ultra-precise atomic clocks and powerful nuclear batteries February 19th, 2021

From heat to spin to electricity: Understanding spin transport in thermoelectric devices: Scientists shed light on how the magnetic properties of 2D interlayers can enhance spin accumulation effects in thermoelectric heterostructures January 29th, 2021

New technique builds super-hard metals from nanoparticles January 22nd, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Artificial Intelligence

New study investigates photonics for artificial intelligence and neuromorphic computing February 1st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

New super-resolution method reveals fine details without constantly needing to zoom in August 12th, 2020

Machine learning reveals recipe for building artificial proteins July 24th, 2020

Dental

Innovations in dentistry: Navigational surgery, robotics, and nanotechnology October 2nd, 2020

Gas storage method could help next-generation clean energy vehicles: Tremendous amounts of hydrogen and methane can be stored in nanoscopic pores April 17th, 2020

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

Dental plaque is no match for catalytic nanoparticles: Twice-daily rinses of FDA-approved nanoparticles broke apart oral biofilms and prevented tooth decay in a study led by Penn researchers August 8th, 2018

Construction

A quantum material-based diagnostic paint to sense problems before structural failure October 23rd, 2020

Discovery of disordered nanolayers in intermetallic alloys: Resolving alloys' strength-ductility trade-off and thermal instability July 24th, 2020

Sustainable structural material for plastic substitute May 11th, 2020

Scientists came up with nanoconcrete for casting under negative temperature conditions March 6th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project