Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Gas storage method could help next-generation clean energy vehicles: Tremendous amounts of hydrogen and methane can be stored in nanoscopic pores

A one-gram sample of the Northwestern material (with a volume of six M&Ms) has a surface area that would cover 1.3 football fields. (Credit: Northwestern University)
A one-gram sample of the Northwestern material (with a volume of six M&Ms) has a surface area that would cover 1.3 football fields. (Credit: Northwestern University)

Abstract:
•New materials are safer and less expensive than conventional materials
•Structure of modified organic frameworks is like Tinkertoys
•The surface area of more than a football field fits in one gram of the material

Gas storage method could help next-generation clean energy vehicles: Tremendous amounts of hydrogen and methane can be stored in nanoscopic pores

Evanston, IL | Posted on April 17th, 2020

A research team led by Northwestern University has designed and synthesized new materials with ultrahigh porosity and surface area for the storage of hydrogen and methane for fuel cell-powered vehicles. These gases are attractive clean energy alternatives to carbon dioxide-producing fossil fuels.

The designer materials, a type of a metal-organic framework (MOF), can store significantly more hydrogen and methane than conventional adsorbent materials at much safer pressures and at much lower costs.



“We’ve developed a better onboard storage method for hydrogen and methane gas for next-generation clean energy vehicles,” said Omar K. Farha, who led the research. “To do this, we used chemical principles to design porous materials with precise atomic arrangement, thereby achieving ultrahigh porosity.”



Adsorbents are porous solids which bind liquid or gaseous molecules to their surface. Thanks to its nanoscopic pores, a one-gram sample of the Northwestern material (with a volume of six M&Ms) has a surface area that would cover 1.3 football fields.



The new materials also could be a breakthrough for the gas storage industry at large, Farha said, because many industries and applications require the use of compressed gases such as oxygen, hydrogen, methane and others.



Farha is an associate professor of chemistry in the Weinberg College of Arts and Sciences. He also is a member of Northwestern’s International Institute for Nanotechnology.



The study, combining experiment and molecular simulation, will be published on April 17 by the journal Science.



Farha is the lead and corresponding author. Zhijie Chen, a postdoctoral fellow in Farha’s group, is co-first author. Penghao Li, a postdoctoral fellow in the lab of Sir Fraser Stoddart, Board of Trustees Professor of Chemistry at Northwestern, also is a co-first author. Stoddart is an author on the paper.



The ultraporous MOFs, named NU-1501, are built from organic molecules and metal ions or clusters which self-assemble to form multidimensional, highly crystalline, porous frameworks. To picture the structure of a MOF, Farha said, envision a set of Tinkertoys in which the metal ions or clusters are the circular or square nodes and the organic molecules are the rods holding the nodes together.



Hydrogen- and methane-powered vehicles currently require high-pressure compression to operate. The pressure of a hydrogen tank is 300 times greater than the pressure in car tires. Because of hydrogen’s low density, it is expensive to accomplish this pressure, and it also can be unsafe because the gas is highly flammable.



Developing new adsorbent materials that can store hydrogen and methane gas onboard vehicles at much lower pressures can help scientists and engineers reach U.S. Department of Energy targets for developing the next generation of clean energy automobiles.



To meet these goals, both the size and weight of the onboard fuel tank need to be optimized. The highly porous materials in this study balance both the volumetric (size) and gravimetric (mass) deliverable capacities of hydrogen and methane, bringing researchers one step closer to attaining these targets.



“We can store tremendous amounts of hydrogen and methane within the pores of the MOFs and deliver them to the engine of the vehicle at lower pressures than needed for current fuel cell vehicles,” Farha said.



The Northwestern researchers conceived the idea of their MOFs and, in collaboration with computational modelers at the Colorado School of Mines, confirmed that this class of materials is very intriguing. Farha and his team then designed, synthesized and characterized the materials. They also collaborated with scientists at the National Institute for Standards and Technology (NIST) to conduct high-pressure gas sorption experiments.



The research was supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (award no. DE‐EE0008816).

####

For more information, please click here

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The title of the paper is “Balancing volumetric and gravimetric uptake in highly porous materials for clean energy.”:

Related News Press

News and information

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023

Govt.-Legislation/Regulation/Funding/Policy

New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Possible Futures

New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023

Graphene grows – and we can see it March 24th, 2023

HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023

Announcements

Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023

Bilayer PET/PVDF substrate-reinforced solid polymer electrolyte improves solid-state lithium metal battery performance March 24th, 2023

Environment

Temperature-sensing building material changes color to save energy January 27th, 2023

This new fabric coating could drastically reduce microplastic pollution from washing clothes: University of Toronto Engineering researchers are working on a fabric finish to prevent microplastic fibres from shedding during laundry cycles January 27th, 2023

Researchers create a new 3D extra-large pore zeolite that opens a new path to the decontamination of water and gas: A team of scientists with the participation of the CSIC develops an extra-large pore silica zeolite from a silicate chain January 20th, 2023

New nanowire sensors are the next step in the Internet of Things January 6th, 2023

Energy

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023

TUS researchers propose a simple, inexpensive approach to fabricating carbon nanotube wiring on plastic films: The proposed method produces wiring suitable for developing all-carbon devices, including flexible sensors and energy conversion and storage devices March 3rd, 2023

Make them thin enough, and antiferroelectric materials become ferroelectric February 10th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Dental

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Innovations in dentistry: Navigational surgery, robotics, and nanotechnology October 2nd, 2020

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project