Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Novel nanoparticle-based approach detects and treats oral plaque without drugs

In this illustration, nanoparticles attach to or are taken up by the bacteria cells. Pan and his students are the first group to demonstrate that early detection of dental plaque in the clinic is possible using the regular intraoral X-ray machine which can seek out harmful bacteria populations.

CREDIT
University of Illinois Laboratory for Materials in Medicine.
In this illustration, nanoparticles attach to or are taken up by the bacteria cells. Pan and his students are the first group to demonstrate that early detection of dental plaque in the clinic is possible using the regular intraoral X-ray machine which can seek out harmful bacteria populations.

CREDIT
University of Illinois Laboratory for Materials in Medicine.
In this illustration, nanoparticles attach to or are taken up by the bacteria cells. Pan and his students are the first group to demonstrate that early detection of dental plaque in the clinic is possible using the regular intraoral X-ray machine which can seek out harmful bacteria populations. CREDIT University of Illinois Laboratory for Materials in Medicine. In this illustration, nanoparticles attach to or are taken up by the bacteria cells. Pan and his students are the first group to demonstrate that early detection of dental plaque in the clinic is possible using the regular intraoral X-ray machine which can seek out harmful bacteria populations. CREDIT University of Illinois Laboratory for Materials in Medicine.

Abstract:
When the good and bad bacteria in our mouth become imbalanced, the bad bacteria form a biofilm (aka plaque), which can cause cavities, and if left untreated over time, can lead to cardiovascular and other inflammatory diseases like diabetes and bacterial pneumonia.

Novel nanoparticle-based approach detects and treats oral plaque without drugs

Urbana, IL | Posted on August 17th, 2018

A team of researchers from the University of Illinois has recently devised a practical nanotechnology-based method for detecting and treating the harmful bacteria that cause plaque and lead to tooth decay and other detrimental conditions.

Bioengineering Associate Professor Dipanjan Pan (seated) and doctoral student Fatemeh Ostadhossein have demonstrated a drug-free, nanotechnology-based method for detecting and destroying the bacteria that causes dental plaque.

Oral plaque is invisible to the eye so dentists currently visualize it with disclosing agents, which they administer to patients in the form of a dissolvable tablet or brush-on swab. While useful in helping patients see the extent of their plaque, these methods are unable to identify the difference between good and bad bacteria.

"Presently in the clinic, detection of dental plaque is highly subjective and only depends on the dentist's visual evaluation," said Bioengineering Associate Professor Dipanjan Pan, head of the research team. "We have demonstrated for the first time that early detection of dental plaque in the clinic is possible using the regular intraoral X-ray machine which can seek out harmful bacteria populations."

In order to accomplish this, Fatemeh Ostadhossein, a Bioengineering graduate student in Pan's group, developed a plaque detection probe that works in conjunction with common X-ray technology and which is capable of finding specific harmful bacteria known as Streptococcus mutans (S. mutans) in a complex biofilm network. Additionally, they also demonstrated that by tweaking the chemical composition of the probe, it can be used to target and destroy the S. mutans bacteria.

The probe is comprised of nanoparticles made of hafnium oxide (HfO2), a non-toxic metal that is currently under clinical trial for internal use in humans. In their study, the team demonstrated the efficacy of the probe to identify biochemical markers present at the surface of the bacterial biofilm and simultaneously destroy S. mutans. They conducted their study on Sprague Dawley rats.

In practice, Pan envisions a dentist applying the probe on the patient's teeth and using the X-ray machine to accurately visualize the extent of the biofilm plaque. If the plaque is deemed severe, then the dentist would follow up with the administering of the therapeutic HfO2 nanoparticles in the form of a dental paste.

In their study, the team compared the therapeutic ability of their nanoparticles with Chlorhexidine, a chemical currently used by dentists to eradicate biofilm. "Our HfO2 nanoparticles are far more efficient at killing the bacteria and reducing the biofilm burden both in cell cultures of bacteria and in [infected] rats," said Ostadhossein, noting that their new technology is also much safer than conventional treatment.

The nanoparticles' therapeutic effect is due, said Pan, to their unique surface chemistry, which provides a latch and kill mechanism. "This mechanism sets our work apart from previously pursued nanoparticle-based approaches where the medicinal effect comes from anti-biotics encapsulated in the particles," said Pan, also a faculty member of the Carle Illinois College of Medicine and the Beckman Institute for Advanced Science and Technology. "This is good because our approach avoids anti-biotic resistance issues and it's safe and highly scalable, making it well-suited for eventual clinical translation."

In addition to Pan and Ostadhossein, other members of the research team include bioengineering post-doctoral researcher Santosh Misra, visiting scholar Indu Tripathi, undergraduate Valeriya Kravchuk, visiting scholar Gururaja Vulugundam; and Veterinary Medicine clinical assistant professor Denae LoBato and adjunct assistant professor Laura Selmic.

###

Their work is described in the paper, "Dual purpose hafnium oxide nanoparticles offer imaging Streptococcus mutans dental biofilm and fight it In vivo via a drug free approach," published online on July 30, 2018, in the journal Biomaterials. The research was funded by the University of Illinois at Urbana-Champaign Children's Discovery Institute and the American Heart Association.

####

For more information, please click here

Contacts:
Dipanjan Pan

217-244-2938

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

When Dirac meets frustrated magnetism August 3rd, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Imaging

Bruker Launches Revolutionary High-Speed AFM System for Single-Molecule Applications: JPK NanoRacer® Follows Molecular Dynamics in Real Time at 50 Frames per Second July 30th, 2020

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

HORIBA Medical and CEA-Leti Strengthen Their Partnership to Develop Tomorrow’s Diagnostics at the Point of Care July 21st, 2020

Scientists open new window into the nanoworld July 17th, 2020

Possible Futures

Physicists find misaligned carbon sheets yield unparalleled properties July 31st, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Nanomedicine

Izon Science receives $10.5M investment from Bolton Equities: Christchurch-headquartered nanotech company secures investment to accelerate global growth; appoints top board chairman and directors July 28th, 2020

Arrowhead Pharmaceuticals Hosts Key Opinion Leader Webinar on ARO-ENaC for Treatment of Cystic Fibrosis July 28th, 2020

Silver-plated gold nanostars detect early cancer biomarkers: New optical sensing platform can detect genomic cancer biomarkers directly in patient tissues July 24th, 2020

HORIBA Medical and CEA-Leti Strengthen Their Partnership to Develop Tomorrow’s Diagnostics at the Point of Care July 21st, 2020

Discoveries

When Dirac meets frustrated magnetism August 3rd, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Announcements

When Dirac meets frustrated magnetism August 3rd, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

When Dirac meets frustrated magnetism August 3rd, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Tools

Bruker Launches Revolutionary High-Speed AFM System for Single-Molecule Applications: JPK NanoRacer® Follows Molecular Dynamics in Real Time at 50 Frames per Second July 30th, 2020

Izon Science receives $10.5M investment from Bolton Equities: Christchurch-headquartered nanotech company secures investment to accelerate global growth; appoints top board chairman and directors July 28th, 2020

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

Project creates more powerful, versatile ultrafast laser pulse: Institute of Optics research sets record for shortest laser pulse for newly developed technology, work that has important applications in engineering and biomedicine July 24th, 2020

Nanobiotechnology

Izon Science receives $10.5M investment from Bolton Equities: Christchurch-headquartered nanotech company secures investment to accelerate global growth; appoints top board chairman and directors July 28th, 2020

Arrowhead Pharmaceuticals Hosts Key Opinion Leader Webinar on ARO-ENaC for Treatment of Cystic Fibrosis July 28th, 2020

Silver-plated gold nanostars detect early cancer biomarkers: New optical sensing platform can detect genomic cancer biomarkers directly in patient tissues July 24th, 2020

HORIBA Medical and CEA-Leti Strengthen Their Partnership to Develop Tomorrow’s Diagnostics at the Point of Care July 21st, 2020

Dental

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Gas storage method could help next-generation clean energy vehicles: Tremendous amounts of hydrogen and methane can be stored in nanoscopic pores April 17th, 2020

Dental plaque is no match for catalytic nanoparticles: Twice-daily rinses of FDA-approved nanoparticles broke apart oral biofilms and prevented tooth decay in a study led by Penn researchers August 8th, 2018

Detecting the birth and death of a phonon June 7th, 2018

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project