Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 3-D-printed jars in ball-milling experiments

This image shows a thin-walled jar with a groove; isometric view with a cut (left) and cross section (right).
CREDIT
Tumanov et al
This image shows a thin-walled jar with a groove; isometric view with a cut (left) and cross section (right). CREDIT Tumanov et al

Abstract:
Mechanochemistry is a widespread synthesis technique in all areas of chemistry. Various materials have been synthesized by this technique when the classical wet chemistry route is not satisfactory. Characterization of the reaction mixture is however much less accessible than in solutions.

3-D-printed jars in ball-milling experiments

Chester, UK | Posted on June 29th, 2017

Recently, in situ observations of mechanochemical reactions have been achieved by X-ray diffraction and Raman spectroscopy. Solid-state reactions can be directly tracked, revealing phase transitions and other material transformations during synthesis in a ball mill jar. This technique has become increasingly popular in different fields of mechanochemistry.

As the X-rays go through the entire jar, the diffraction patterns present a high background due to the scattering from the thick walls of the jar. Also, broad diffraction peaks are expected from the sample as a result of probing a large sample area covering the entire jar. An extra complexity arises from diffraction on the milling balls.

Tumanov et al. [(2017). J. Appl. Cryst. 50. doi:10.1107/S1600576717006744] reasoned that these issues can be resolved by modifying the geometry and material of the milling jar. But, making a jar with a complex geometry using traditional production techniques is complicated, especially at the stage of creating a prototype, when introducing changes into a design should be facile. For this reason they decided to use a 3D printer for the purpose. They show how this useful production tool can quickly make milling jars optimized for improved background, absorption and angular resolution in X-ray powder diffraction experiments; the jars are also more resistant to solvents compared with standard acrylic jars. 3D printing allows for low-cost fast production on demand.

Source files for printing the jars are available as supporting information for the paper.

####

For more information, please click here

Contacts:
Dr. Jonathan Agbenyega

44-124-434-2878

Copyright © International Union of Crystallography

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Study demonstrates that Ta2NiSe5 is not an excitonic insulator international research team settles the decade-long debate around the microscopic origin of symmetry breaking in the bulk crystal May 12th, 2023

Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023

Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023

Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023

Chemistry

Recent progress of carbon-based non-noble metal single-atom catalysts for energy conversion electrocatalysis March 3rd, 2023

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Researchers create a new 3D extra-large pore zeolite that opens a new path to the decontamination of water and gas: A team of scientists with the participation of the CSIC develops an extra-large pore silica zeolite from a silicate chain January 20th, 2023

Dual-site collaboration boosts electrochemical nitrogen reduction on Ru-S-C single-atom catalyst January 6th, 2023

3D & 4D printing/Additive-manufacturing

Fiber sensing scientists invent 3D printed fiber microprobe for measuring in vivo biomechanical properties of tissue and even single cell February 10th, 2023

3D-printed decoder, AI-enabled image compression could enable higher-res displays December 9th, 2022

Crystallography

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

How to trick electrons to see the hidden face of crystals: Researchers try a trick for complete 3D analysis of submicron crystals August 3rd, 2019

Novel nozzle saves crystals: Double flow concept widens spectrum for protein crystallography March 17th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Possible Futures

Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023

Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023

Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023

Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023

Discoveries

With new experimental method, researchers probe spin structure in 2D materials for first time: By observing spin structure in “magic-angle” graphene, a team of scientists led by Brown University researchers have found a workaround for a long-standing roadblock in the field of two May 12th, 2023

Study demonstrates that Ta2NiSe5 is not an excitonic insulator international research team settles the decade-long debate around the microscopic origin of symmetry breaking in the bulk crystal May 12th, 2023

Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023

Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023

Announcements

Study demonstrates that Ta2NiSe5 is not an excitonic insulator international research team settles the decade-long debate around the microscopic origin of symmetry breaking in the bulk crystal May 12th, 2023

Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023

Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023

Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Stanford researchers develop a new way to identify bacteria in fluids: An innovative adaptation of the technology in an old inkjet printer plus AI-assisted imaging leads to a faster, cheaper way to spot bacteria in blood, wastewater, and more March 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project