Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Novel nozzle saves crystals: Double flow concept widens spectrum for protein crystallography

Radiograph of the working nozzle, showing the inner protein stream surrounded by the ethanol jet.

Credit: Dominik Oberthuer, DESY
Radiograph of the working nozzle, showing the inner protein stream surrounded by the ethanol jet. Credit: Dominik Oberthuer, DESY

Abstract:
Scientists are interested in the spatial structure of proteins, as it reveals much about the workings of these biomolecules. This knowledge can lead to a better understanding of the functions of biomolecules and to tailored medicines. X-ray crystallography is the prime tool to solve protein structures. However, it requires to grow crystals of the proteins under investigation. When X-rays hit these crystals, they are diffracted from the atoms to form a characteristic pattern from which the spatial structure of the crystal -- and hence the protein molecules -- can be calculated.

Novel nozzle saves crystals: Double flow concept widens spectrum for protein crystallography

Hamburg, Germany | Posted on March 17th, 2017

However, many proteins do not like being squeezed into crystals as it contradicts their natural state. "Growing protein crystals is complex, the amount of protein that can be produced is often limited to few millionth of a gram and often only very tiny crystals can be obtained," says Dominik Oberthür from DESY, main author of the report. With the extremely bright flashes of X-ray free-electron lasers even those micro crystals can be analysed, but usually thousands of diffraction patterns are needed to solve the protein structure. Since the delicate micro crystals are completely vaporised by the intense X-ray flash -- after they delivered their diffraction pattern -- a stream of fresh micro crystals is sent through the laser beam. This concept is known as serial X-ray crystallography and has enabled the analysis of many previously inaccessible proteins.

Still, even those micro crystals are hard to obtain, and only a fraction of them is actually hit by an X-ray flash, depending on the geometry of the crystal stream and the technical parameters of the X-ray laser. "The less crystals, the less protein material you need, the more feasible is the analysis," emphasises Oberthür. Bajt's team conceived a new concept for a so-called double flow-focusing nozzle (DFFN) that greatly reduces protein crystal consumption. Usually, the protein crystals are injected with some carrier liquid ("buffer") into the X-ray beam, using a special nozzle. To form a thin jet, the carrier liquid is accelerated by a fast stream of gas surrounding the liquid. But to form a stable jet, a minimum flow rate is needed, usually wasting most of the crystals in the jet.

To overcome these difficulties the team added ethanol (alcohol) as a secondary "sheath" liquid between the gas and the buffer. This leads to the sheath liquid being accelerated by the gas. The crystals in their buffer can then be injected as a very thin stream into the centre of the ethanol jet. "Before, the buffer with the crystals had to do two jobs: form a stable jet and carry protein crystals," explained Juraj Knoška, a PhD student at CFEL and the University of Hamburg, who developed the nozzles. "Our approach separates these roles and uses the liquids that are best for the job." Ethanol has ideal characteristics to form a very stable jet, which flows with just a fine stream of the crystal carrying buffer in the centre. This way, the flow rate of the buffer could be reduced from about 40 micro litres (millionths of a litre) to just 2 micro litres per minute. Also, the fine, stable stream of nano crystals can be kept precisely overlapping with the small beam of the X-ray laser. In addition the reduction in overall flow-rate enhances the quality of the diffraction patterns and the rate at which crystals are actually hit by the X-ray flashes.

"Not only do we reduce crystal consumption, but our double flow-focusing nozzle also makes the use of the X-ray source more efficient by increasing the rate at which we collect high-quality diffraction patterns," says Bajt. "Moreover, using the sheath liquid allows us to investigate proteins in buffers that couldn't be injected before. Our concept widens the spectrum of biomolecules that can be analysed." Her team tested the new nozzle at the X-ray laser LCLS of the SLAC National Accelerator Laboratory in the US. The scientists teamed up with different groups to solve the structures of various proteins.

"Together with the group of Nobel laureate Roger Kornberg from Stanford University, we could solve the structure of the enzyme RNA polymerase II at room temperature for the first time," explains Oberthür. "Since crystallography at room temperature is a prerequisite to study structural dynamics in detail, this opens the door for future time-resolved studies or 'molecular movies' with this important system." The new device was also used to analyse two other enzymes, a membrane bound hydrogenase and a dioxygenase as well as naturally occurring protein nano crystals, from the protective cocoon of a specialised virus (Cydia pomonella granulovirus, CpGV).

The double flow-focusing nozzle also does away with another practical problem of this form of jet injection: Usually, at the edge of conventional nozzles, buffer material, protein and water ice crystals aggregate over time to form dripstone-like features. The same frequently happens at the bottom of the catch tank below the nozzle. If these protein-ice stalactites and stalagmites grow into the X-ray beam, they do not only render the diffraction pattern useless, their reflections can be so strong that they destroy the detector. So, every now and then, experiments need to be suspended to remove the protein-ice dripstones. "The sheath liquid in our nozzle prevents formation of such unwanted structures. The double flow-focusing nozzle enabled stable experimental conditions for many hours," explains Oberthür.

"In all experiments the nozzle worked extremely well," summarises Bajt. "We could reduce the number of interruptions from ten to zero in a shift, and we expect that experimental stations at other X-ray lasers and at synchrotron light sources like DESY's PETRA III can also benefit from the advantages of our device."

###

The Arizona State University, the Cornell University, the University of Minnesota, the Technical University of Berlin, the Charité Universitätsmedizin Berlin, the Hauptmann-Woodward Medical Research Institute, the University of Nova Gorica, the Institute of Metals and Technology in Ljubljana, the Helmholtz-Zentrum Geesthacht, the University of Hamburg, and the Hamburg Centre for Ultrafast Imaging CUI were also involved in this research. CFEL is a cooperation of DESY, the University of Hamburg and the German Max Planck Society.

####

About Deutsches Elektronen-Synchrotron DESY
Deutsches Elektronen-Synchrotron DESY is the leading German accelerator centre and one of the leading in the world. DESY is a member of the Helmholtz Association and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent). At its locations in Hamburg and Zeuthen near Berlin, DESY develops, builds and operates large particle accelerators, and uses them to investigate the structure of matter. DESY's combination of photon science and particle physics is unique in Europe.

For more information, please click here

Contacts:
Thomas Zoufal

49-408-998-1666

Copyright © Deutsches Elektronen-Synchrotron DESY

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference

Related News Press

Imaging

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

News and information

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Crystallography

3-D-printed jars in ball-milling experiments June 29th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Biophysicists propose new approach for membrane protein crystallization March 8th, 2017

Most Complex Nanoparticle Crystal Ever Made by Design: Possible applications include controlling light, capturing pollutants, delivering therapeutics March 2nd, 2017

Possible Futures

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Discoveries

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Announcements

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Tools

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Research partnerships

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project