Home > Press > Observation of left and right at nanoscale with optical force
Abstract:
The research group at the Institute for Molecular Science successfully observed the left and right handedness of material structures at the nanoscale, by illuminating chiral gold nanostructures with circularly polarized light and detecting the optical force acting on a probe near the nanostructures. This result demonstrated that it is possible to analyze the chiral structure of matter at the nanoscale using light.
Chirality describes the property of a material structure not being superimposable onto its mirror image. Since the left and right hands, which are mirror images of each other, do not coincide (they are not the same), they are chiral. Chiral objects can be distinguished to right- or left-handedness. Many substances that constitute life are chiral, and often only one of either the right- or left-handedness naturally exists. Also, in new functional materials, their chiral nature often plays an important role for the functions. One characteristic of such chiral materials is to exhibit different responses to right- and left-circularly polarized light (Figure 1), known as the chiro-optical effect. However, observation of the chiro-optical effect at the nanoscale, occurring near a chiral substance, had not been realized until now.
In this study, the chiro-optical effect at the nanoscale was observed by using Photo-induced Force Microscopy under optical force mode (OF-PiFM), which detects the optical force exerted on the tip near the illuminated object. Although it was theoretically considered that the chiro-optical effect at the nanoscale could be observed using OF-PiFM, no actual observations had been reported. The research group successfully observed the chiro-optical effect at the nanoscale by detecting the optical force induced on the probe near the chiral gold nanostructure illuminated with right- and left-circularly polarized light using OF-PiFM (Figure 2).
As a sample to verify the effectiveness of this method, the research group used a gammadion-shaped gold nanostructures (Figure 3).
As a result of imaging the gammadion structures with OF-PiFM, different images were obtained when illuminating with right-circularly polarized light compared to left-circularly polarized light (Figure 4).
These results clarify that local right- or left-handedness at the nanoscale can be distinguished and observed using OF-PiFM with circularly polarized light.
▼Financial Supports
This research was conducted with the support of various grants, including the Grant-in-Aid for Scientific Research (JP16H06505, JP21H04641, JP21K18884, JP22H05135, etc.).
####
For more information, please click here
Contacts:
Hayao KIMURA
National Institutes of Natural Sciences
Office: 81-354-251-890
Public Relations Manager
Institute for Molecular Science
Copyright © National Institutes of Natural Sciences
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links |
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Possible Futures
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||