Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports

Abstract:
Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports. Superconductors are one of the most remarkable phenomena in physics, with amazing technological implications. Some of the technologies that would not be possible without superconductivity are extremely powerful magnets that levitate trains and MRI machines used to image the human body. The reason that superconductivity arises is now understood as a fundamentally quantum mechanical effect.

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports

Orange, CA | Posted on June 20th, 2016

The basic idea of quantum mechanics is that at the microscopic scale everything, including matter and light, has a wave property to it. Normally the wave nature is not noticeable as the waves are very small, and all the waves are out of synchronization with each other, so that their effects are not important. For this reason, to observe quantum mechanical behavior experiments generally have to be performed at a very low temperature, and at microscopic length scales.

Superconductors, on the other hand, have a dramatic effect in the disappearance of resistance, changing the entire property of the material. The key quantum effect that occurs is that the quantum waves become highly synchronized and occur at a macroscopic level. This is now understood to be the same basic effect as that seen in lasers. The similarity is that in a laser, all the photons making up the light are synchronized, and appear as one single coherent wave. In a superconductor the macroscopic wave is for the quantum waves of the electrons, instead of the photons, but the basic quantum feature is the same. Such macroscopic quantum waves have also been observed in Bose-Einstein condensates, where atoms cooled to nanokelvin temperatures all collapse into a single state.

Up until now, these related but distinct phenomena have only been observed separately. However, as superconductors, lasers, and Bose-Einstein condensates all share a common feature, it has been expected that it should be able to see these features at the same time. A recent experiment in a global collaborative effort with teams from Japan, the United States, and Germany have observed for the first time experimental indication that this expectation is true.

They tackled this problem by highly exciting exciton-polaritons, which are particle-like excitations in a semiconductor systems and formed by strong coupling between electron-hole pairs and photons. They observed high-energy side-peak emission that cannot be explained by two mechanisms known to date: Bose-Einstein condensation of exciton-polaritons, nor conventional semiconductor lasing driven by the optical gain from unbound electron hole plasma.

By combining the experimental data with their latest theory, they found a possibility that the peak originates from a strongly bound e-h pairs, which can persist in the presence of the high-quality optical cavity even for the lasing state. This scenario has been thought to be impossible since an e-h pair experiencing weakened binding force due to other electrons and/or holes breaks up in high-density. The proposed scenario is closely related to the BCS physics, which was originally introduced by John Bardeen, Leon Cooper, and John Robert Schrieffer to explain the origin of superconductivity. In the BCS theory, the superconductivity is an effect caused by a condensation of weakly bound electron pairs (Cooper pairs). In the latest theory of e-h pairs plus photons (e-h-p), bound e-h pairs' survival can be described in BCS theory of e-h-p system as an analogy of Cooper pairs in superconductivity.

"Although a full understanding of this observation has not yet been reached," said Dr. Tomoyuki Horikiri at Yokohama National University, and one of the authors on the study. "The discovery provides an important step toward the clarification of the relationship between the BCS physics and the semiconductor lasers. The observation not only deepens the understanding of the highly-excited exciton-polariton systems, but also opens up a new avenue for exploring the non-equilibrium and dissipative many-body physics. In such practical application studies, there are still many quantum foundational questions."

###

The paper was published in Scientific Reports by Nature Publishing Group. In addition to Tomoyuki Horikiri, it was co-authored by Dr. Makoto Yamaguchi and Dr. Kenji Kamide and an international collaboration team including Tim Byrnes at New York University; Yutaka Shikano at Institute for Molecular Science, National Institutes of Natural Sciences and Institute for Quantum Studies, Chapman University; Tetsuya Ogawa at Osaka University; Alfred Forchel at Universität Würzburg, and YoshihisaYamamoto at Stanford University and National Institute of Informatics.

####

About Chapman University
Consistently ranked among the top universities in the West, Chapman University attracts highly qualified students from around the globe. Its programs are designed to encourage leadership in innovation, creativity and collaboration, and are increasingly recognized for providing an extraordinary educational experience. The university excels in the sciences and humanities, business and economics, educational studies, film and media arts, performing arts, and law. Student enrollment in graduate and undergraduate programs is approaching 8,000 and Chapman University alumni are found throughout the world. Visit us at www.chapman.edu.

Follow us on Facebook at: Chapman University Facebook
On Twitter and Instagram at: @ChapmanU

For more information, please click here

Contacts:
Sheri Ledbetter

714-289-3143

Copyright © Chapman University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To see the full article, click here:

More about Chapman's Insititute for Quantum Studies can be found here:

Related News Press

Imaging

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

House cleaning on the nanoscale: FAU scientists develop method for cleaning surfaces at the nanoscale April 8th, 2020

A pigment from ancient Egypt to modern microscopy: Göttingen research team produces new nanosheets for near infrared imaging March 23rd, 2020

Silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm March 13th, 2020

News and information

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

House cleaning on the nanoscale: FAU scientists develop method for cleaning surfaces at the nanoscale April 8th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

3D reconstructions of individual nanoparticles: Liquid phase electron microscopy illuminates 3D atomic structures of platinum nanoparticles, advancing full control of nanoengineering April 3rd, 2020

Magnetism

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

Scientists propose nanoparticles that can treat cancer with magnetic fluid hyperthermia: A group of Russian scientists have synthesized manganese-zinc ferrite nanoparticles that can potentially be used in cancer treatment March 11th, 2020

Superconductivity

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

Quantum Physics

Quantum phenomenon governs organic solar cells: Vibronic coherence contributes to photocurrent generation in organic semiconductor heterojunction diodes March 30th, 2020

Blog sites

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Peter Diamandis Thinks Nanotech Will Interface With Human Minds September 1st, 2016

Graphene-Enabled Paper Makes for Flexible Display August 1st, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Govt.-Legislation/Regulation/Funding/Policy

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

A combined optical transmitter and receiver: Bidirectional optical signal transmission between two identical devices using perovskite diodes April 3rd, 2020

3D reconstructions of individual nanoparticles: Liquid phase electron microscopy illuminates 3D atomic structures of platinum nanoparticles, advancing full control of nanoengineering April 3rd, 2020

Possible Futures

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

House cleaning on the nanoscale: FAU scientists develop method for cleaning surfaces at the nanoscale April 8th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

Discoveries

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

House cleaning on the nanoscale: FAU scientists develop method for cleaning surfaces at the nanoscale April 8th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

Announcements

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

House cleaning on the nanoscale: FAU scientists develop method for cleaning surfaces at the nanoscale April 8th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

3D reconstructions of individual nanoparticles: Liquid phase electron microscopy illuminates 3D atomic structures of platinum nanoparticles, advancing full control of nanoengineering April 3rd, 2020

Tools

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

House cleaning on the nanoscale: FAU scientists develop method for cleaning surfaces at the nanoscale April 8th, 2020

Show Me the Methane: Hyperspectral imaging and artificial intelligence combine to augment detection of methane leaks March 10th, 2020

Oxford Instruments announces release of new dilution refrigerator - Proteox: Opening the door for a new direction in dilution refrigerator development February 28th, 2020

Military

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

Nanomaterial fabric destroys nerve agents in battlefield-relevant conditions: Metal-organic framework-based composites don’t need liquid water to work January 14th, 2020

Automotive/Transportation

Pathways toward realizing the promise of all-solid-state batteries March 13th, 2020

New catalyst provides boost to next-generation EV batteries March 13th, 2020

Russian scientists found an effective way to obtain fuel for hydrogen engines: One of the most promising alternative energy sources is hydrogen, which can be extracted from water and air February 21st, 2020

KIST researchers develop high-capacity EV battery materials that double driving range: Everyday materials and simple process used to develop new battery anode materials! Cost-effectiveness and simplicity of process and excellent properties of materials enable mass-production and February 21st, 2020

Photonics/Optics/Lasers

A combined optical transmitter and receiver: Bidirectional optical signal transmission between two identical devices using perovskite diodes April 3rd, 2020

Light in the tunnel March 26th, 2020

Heterostructure and Q-factor engineering for low-threshold and persistent nanowire lasing March 22nd, 2020

On-chip single-mode CdS nanowire laser March 21st, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project