Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Biophysics -- lighting up DNA-based nanostructures

Super-resolution microscopy. With DNA-PAINT it is possible to visualize all the strands in DNA nanostructures individually. Photo: Maximilian Strauss, Max Planck Institute for Biochemistry.
Super-resolution microscopy. With DNA-PAINT it is possible to visualize all the strands in DNA nanostructures individually. Photo: Maximilian Strauss, Max Planck Institute for Biochemistry.

Abstract:
The term 'DNA origami' refers to a method for the design and self-assembly of complex molecular structures with nanometer precision. The technique exploits the base-pairing interactions between single-stranded DNA molecules of known sequence to generate intricate three-dimensional nanostructures with predefined shapes in arbitrarily large numbers. The method has great potential for a wide range of applications in basic biological and biophysical research. Thus researchers are already using DNA origami to develop functional nanomachines. In this context, the ability to characterize the quality of the assembly process is vital. Now a team led by Ralf Jungmann, Professor of Experimental Physics at LMU Munich and Head of the Molecular Imaging and Bionanotechnology lab at the Max Planck Institute for Biochemistry (Martinsried), reports an important advance in this regard. In the online journal Nature Communications, he and his colleagues describe a mode of super-resolution microscopy that enables all the strands within these nanostructures to be visualized individually. This has allowed them to conclude that assembly proceeds in a robust fashion under a wide range of conditions, but that the probability that a given strand will be efficiently incorporated is dependent on the precise position of its target sequence in the growing structure.

Biophysics -- lighting up DNA-based nanostructures

Munich, Germany | Posted on April 25th, 2018

DNA origami structures are essentially assembled by allowing one long single-stranded DNA molecule (the 'scaffold' strand) to interact in a controlled, predefined manner with a set of shorter 'staple' strands. The latter bind to specific ('complementary') stretches of the scaffold strand, progressively folding it into the desired form. "In our case, the DNA strands self-assemble into a flat rectangular structure, which serves as the basic building block for many DNA origami-based studies at the moment," says Maximilian Strauss, joint first author of the new paper, together with Florian Schüder and Daniel Haas. With the aid of a super-resolution technique called DNA-PAINT, the researchers are able to visualize nanostructures with unprecedented spatial resolution, allowing them to image each of the strands in the nanostructures. "So we can now directly visualize all components of the origami structure and determine how well it put itself together," says Strauss.

As its name suggests, the DNA-PAINT technique itself also makes use of the specificity of DNA-DNA interactions. Here, short 'imager' strands linked to dye molecules that pair up with complementary sequences are used to identify sites that are accessible for binding. Imager strands interact transiently but repetitively with their target sites, which results in a "blinking" signal. "By comparing the information in the individual fluorescence images, we are able to attain a higher resolution, so that we can inspect the whole structure in detail," Strauss says. "This phenomenon can be understood as follows. Let's say we're looking at a house with two illuminated windows. Seen from a certain distance, it appears as if the light is coming from one source. However, one can readily distinguish between the positions of the two windows if the lights are alternately switched on and off." Hence, the method allows the researchers to determine the positions of the bound staple strands precisely, and the specific blinking signal emitted by imager strands reveals sites that are available for binding.

The results obtained with the DNA-PAINT method revealed that variations in several physical parameters - such as the overall speed of structure formation - have little influence on the overall quality of the assembly process. However, although its efficiency can be enhanced by the use of additional staple strands, not all strands were found in all of the nanoparticles formed, i.e. not all available sites were occupied in all of the final structures. "When assembling nanomachines it is therefore advisable that the individual components are added in large excess and the positions of the modifications chosen in accordance with our mapping of incorporation efficiency," Strauss says.

The DNA-PAINT method thus provides a means of optimizing the construction of DNA nanostructures. In addition, the authors believe that the technology has great potential in the field of quantitative structural biology, as it will allow researchers to measure important parameters such as the labelling efficiency of antibodies, cellular proteins and nucleic acids directly.

####

For more information, please click here

Contacts:
Luise Dirscherl

49-089-218-03423

Copyright © Ludwig-Maximilians-Universität München (LMU)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Imaging

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Cancer

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Tiny particles could help fight brain cancer: Nanoparticles carrying two drugs can cross the blood-brain barrier and shrink glioblastoma tumors May 30th, 2018

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Elastic microspheres expand understanding of embryonic development and cancer cells May 15th, 2018

Biophysics

Promising news from biomedicine: DNA origami more resilient than previously understood June 4th, 2018

Possible Futures

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Molecular Machines

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Molecular Nanotechnology

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Moving nanoparticles using light and magnetic fields January 25th, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Nanomedicine

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

Discoveries

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

Announcements

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

Tools

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Nanometrics to Participate in the 10th Annual CEO Investor Summit 2018: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2018 in San Francisco June 28th, 2018

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Nanobiotechnology

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

Arrowhead Presents New Clinical Data on ARO-AAT at Alpha-1 National Education Conference July 1st, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project