Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Biophysics -- lighting up DNA-based nanostructures

Super-resolution microscopy. With DNA-PAINT it is possible to visualize all the strands in DNA nanostructures individually. Photo: Maximilian Strauss, Max Planck Institute for Biochemistry.
Super-resolution microscopy. With DNA-PAINT it is possible to visualize all the strands in DNA nanostructures individually. Photo: Maximilian Strauss, Max Planck Institute for Biochemistry.

Abstract:
The term 'DNA origami' refers to a method for the design and self-assembly of complex molecular structures with nanometer precision. The technique exploits the base-pairing interactions between single-stranded DNA molecules of known sequence to generate intricate three-dimensional nanostructures with predefined shapes in arbitrarily large numbers. The method has great potential for a wide range of applications in basic biological and biophysical research. Thus researchers are already using DNA origami to develop functional nanomachines. In this context, the ability to characterize the quality of the assembly process is vital. Now a team led by Ralf Jungmann, Professor of Experimental Physics at LMU Munich and Head of the Molecular Imaging and Bionanotechnology lab at the Max Planck Institute for Biochemistry (Martinsried), reports an important advance in this regard. In the online journal Nature Communications, he and his colleagues describe a mode of super-resolution microscopy that enables all the strands within these nanostructures to be visualized individually. This has allowed them to conclude that assembly proceeds in a robust fashion under a wide range of conditions, but that the probability that a given strand will be efficiently incorporated is dependent on the precise position of its target sequence in the growing structure.

Biophysics -- lighting up DNA-based nanostructures

Munich, Germany | Posted on April 25th, 2018

DNA origami structures are essentially assembled by allowing one long single-stranded DNA molecule (the 'scaffold' strand) to interact in a controlled, predefined manner with a set of shorter 'staple' strands. The latter bind to specific ('complementary') stretches of the scaffold strand, progressively folding it into the desired form. "In our case, the DNA strands self-assemble into a flat rectangular structure, which serves as the basic building block for many DNA origami-based studies at the moment," says Maximilian Strauss, joint first author of the new paper, together with Florian Schüder and Daniel Haas. With the aid of a super-resolution technique called DNA-PAINT, the researchers are able to visualize nanostructures with unprecedented spatial resolution, allowing them to image each of the strands in the nanostructures. "So we can now directly visualize all components of the origami structure and determine how well it put itself together," says Strauss.

As its name suggests, the DNA-PAINT technique itself also makes use of the specificity of DNA-DNA interactions. Here, short 'imager' strands linked to dye molecules that pair up with complementary sequences are used to identify sites that are accessible for binding. Imager strands interact transiently but repetitively with their target sites, which results in a "blinking" signal. "By comparing the information in the individual fluorescence images, we are able to attain a higher resolution, so that we can inspect the whole structure in detail," Strauss says. "This phenomenon can be understood as follows. Let's say we're looking at a house with two illuminated windows. Seen from a certain distance, it appears as if the light is coming from one source. However, one can readily distinguish between the positions of the two windows if the lights are alternately switched on and off." Hence, the method allows the researchers to determine the positions of the bound staple strands precisely, and the specific blinking signal emitted by imager strands reveals sites that are available for binding.

The results obtained with the DNA-PAINT method revealed that variations in several physical parameters - such as the overall speed of structure formation - have little influence on the overall quality of the assembly process. However, although its efficiency can be enhanced by the use of additional staple strands, not all strands were found in all of the nanoparticles formed, i.e. not all available sites were occupied in all of the final structures. "When assembling nanomachines it is therefore advisable that the individual components are added in large excess and the positions of the modifications chosen in accordance with our mapping of incorporation efficiency," Strauss says.

The DNA-PAINT method thus provides a means of optimizing the construction of DNA nanostructures. In addition, the authors believe that the technology has great potential in the field of quantitative structural biology, as it will allow researchers to measure important parameters such as the labelling efficiency of antibodies, cellular proteins and nucleic acids directly.

####

For more information, please click here

Contacts:
Luise Dirscherl

49-089-218-03423

Copyright © Ludwig-Maximilians-Universität München (LMU)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

When Dirac meets frustrated magnetism August 3rd, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Imaging

Bruker Launches Revolutionary High-Speed AFM System for Single-Molecule Applications: JPK NanoRacer® Follows Molecular Dynamics in Real Time at 50 Frames per Second July 30th, 2020

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

HORIBA Medical and CEA-Leti Strengthen Their Partnership to Develop Tomorrow’s Diagnostics at the Point of Care July 21st, 2020

Scientists open new window into the nanoworld July 17th, 2020

Porous graphene ribbons doped with nitrogen for electronics and quantum computing July 10th, 2020

Cancer

Silver-plated gold nanostars detect early cancer biomarkers: New optical sensing platform can detect genomic cancer biomarkers directly in patient tissues July 24th, 2020

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Multi-functionalization of graphene for molecular targeted cancer therapy April 24th, 2020

Biophysics

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Promising news from biomedicine: DNA origami more resilient than previously understood June 4th, 2018

Possible Futures

Physicists find misaligned carbon sheets yield unparalleled properties July 31st, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Molecular Machines

Polymers self-assembling like links of a chain for innovative materials: Nature just published the research on unprecedented "Self-assembled poly-catenanes" July 16th, 2020

DNA origami to scale-up molecular motors June 13th, 2019

Big energy savings for tiny machines May 24th, 2019

Kanazawa University research: A closed cage-like molecule that can be opened January 22nd, 2019

Molecular Nanotechnology

DNA origami to scale-up molecular motors June 13th, 2019

Big energy savings for tiny machines May 24th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

Nanomedicine

Izon Science receives $10.5M investment from Bolton Equities: Christchurch-headquartered nanotech company secures investment to accelerate global growth; appoints top board chairman and directors July 28th, 2020

Arrowhead Pharmaceuticals Hosts Key Opinion Leader Webinar on ARO-ENaC for Treatment of Cystic Fibrosis July 28th, 2020

Silver-plated gold nanostars detect early cancer biomarkers: New optical sensing platform can detect genomic cancer biomarkers directly in patient tissues July 24th, 2020

HORIBA Medical and CEA-Leti Strengthen Their Partnership to Develop Tomorrow’s Diagnostics at the Point of Care July 21st, 2020

Discoveries

When Dirac meets frustrated magnetism August 3rd, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Announcements

When Dirac meets frustrated magnetism August 3rd, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

When Dirac meets frustrated magnetism August 3rd, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Tools

Bruker Launches Revolutionary High-Speed AFM System for Single-Molecule Applications: JPK NanoRacer® Follows Molecular Dynamics in Real Time at 50 Frames per Second July 30th, 2020

Izon Science receives $10.5M investment from Bolton Equities: Christchurch-headquartered nanotech company secures investment to accelerate global growth; appoints top board chairman and directors July 28th, 2020

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

Project creates more powerful, versatile ultrafast laser pulse: Institute of Optics research sets record for shortest laser pulse for newly developed technology, work that has important applications in engineering and biomedicine July 24th, 2020

Nanobiotechnology

Izon Science receives $10.5M investment from Bolton Equities: Christchurch-headquartered nanotech company secures investment to accelerate global growth; appoints top board chairman and directors July 28th, 2020

Arrowhead Pharmaceuticals Hosts Key Opinion Leader Webinar on ARO-ENaC for Treatment of Cystic Fibrosis July 28th, 2020

Silver-plated gold nanostars detect early cancer biomarkers: New optical sensing platform can detect genomic cancer biomarkers directly in patient tissues July 24th, 2020

HORIBA Medical and CEA-Leti Strengthen Their Partnership to Develop Tomorrow’s Diagnostics at the Point of Care July 21st, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project